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General Preface

The nine volumes of the series Basic Course: Theoretical Physics are thought to
be textbook materials for the study of university-level physics. They are aimed to
impart, in a compact form, the most important skills of theoretical physics which
can be used as basis for handling more sophisticated topics and problems in the
advanced study of physics as well as in the subsequent physics research. The
conceptual design of the presentation is organized in such a way that

Classical Mechanics (Vol. 1)
Analytical Mechanics (Vol. 2)
Electrodynamics (Vol. 3)
Special Theory of Relativity (Vol. 4)
Thermodynamics (Vol. 5)

are considered as the theory part of an integrated course of experimental and
theoretical physics as is being offered at many universities starting from the first
semester. Therefore, the presentation is consciously chosen to be very elaborate and
self-contained, sometimes surely at the cost of certain elegance, so that the course
is suitable even for self-study, at first without any need of secondary literature. At
any stage, no material is used which has not been dealt with earlier in the text. This
holds in particular for the mathematical tools, which have been comprehensively
developed starting from the school level, of course more or less in the form of
recipes, such that right from the beginning of the study, one can solve problems in
theoretical physics. The mathematical insertions are always then plugged in when
they become indispensable to proceed further in the program of theoretical physics.
It goes without saying that in such a context, not all the mathematical statements
can be proved and derived with absolute rigor. Instead, sometimes a reference must
be made to an appropriate course in mathematics or to an advanced textbook in
mathematics. Nevertheless, I have tried for a reasonably balanced representation
so that the mathematical tools are not only applicable but also appear at least
“plausible.”
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vi General Preface

The mathematical interludes are of course necessary only in the first volumes of
this series, which incorporate more or less the material of a bachelor program. In the
second part of the series which comprises the modern aspects of theoretical physics,

Quantum Mechanics: Basics (Vol. 6)
Quantum Mechanics: Methods and Applications (Vol. 7)
Statistical Physics (Vol. 8)
Many-Body Theory (Vol. 9)

mathematical insertions are no longer necessary. This is partly because, by the
time one comes to this stage, the obligatory mathematics courses one has to take
in order to study physics would have provided the required tools. The fact that
training in theory has already started in the first semester itself permits inclusion
of parts of quantummechanics and statistical physics in the bachelor program itself.
It is clear that the content of the last three volumes cannot be part of an integrated
course but rather the subject matter of pure theory lectures. This holds in particular
for many-body theory which is offered, sometimes, under different names, e.g.,
advanced quantum mechanics, in the eighth or so semester of study. In this part, new
methods and concepts beyond basic studies are introduced and discussed which are
developed in particular for correlated many-particle systems which in the meantime
have become indispensable for a student pursuing master’s or a higher degree and
for being able to read current research literature.

In all the volumes of the series Theoretical Physics, numerous exercises are
included to deepen the understanding and to help correctly apply the abstractly
acquired knowledge. It is obligatory for a student to attempt on his own to adapt
and apply the abstract concepts of theoretical physics to solve realistic problems.
Detailed solutions to the exercises are given at the end of each volume. The idea is
to help a student to overcome any difficulty at a particular step of the solution or to
check one’s own effort. Importantly, these solutions should not seduce the student to
follow the easy way out as a substitute for his own effort. At the end of each bigger
chapter, I have added self-examination questions which shall serve as a self-test and
may be useful while preparing for examinations.

I should not forget to thank all the people who have contributed one way
or another to the success of the book series. The single volumes arose mainly
from lectures which I gave at the universities of Münster, Würzburg, Osnabrück,
and Berlin (Germany), Valladolid (Spain), and Warangal (India). The interest and
constructive criticism of the students provided me the decisive motivation for
preparing the rather extensive manuscripts. After the publication of the German
version, I received a lot of suggestions from numerous colleagues for improvement,
and this helped to further develop and enhance the concept and the performance
of the series. In particular, I appreciate very much the support from Prof. Dr. A.
Ramakanth, a long-standing scientific partner and friend, who helped me in many
respects, e.g., what concerns the checking of the translation of the German text into
the present English version.
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Special thanks are due to the Springer company, in particular to Dr. Th. Schneider
and his team. I remember many useful motivations and stimulations. I have the
feeling that my books are well taken care of.

Berlin, Germany Wolfgang Nolting
May 2016



Preface to Volume 4

The main goal of Vol. 4 (Special Theory of Relativity) remains exactly the same as
that of the total course on theoretical physics. It is thought to be an accompanying
textbook material for the study of university-level physics. It aims to impart, in a
compact form, the most important skills of theoretical physics which can be used as
basis for handling more sophisticated topics and problems in the advanced study of
physics as well as in the subsequent physics research. It is presented in such a way
that it enables self-study without the need for a demanding and laborious reference
to secondary literature. For the understanding of the text, it is only presumed that
the reader has a good grasp of what has been elaborated in the preceding Vols. 1–
3. Mathematical interludes are always presented in a compact and functional form
and are practiced when they appear indispensable for the further development of the
theory. Such mathematical insertions, though, are of course becoming decreasingly
necessary with increasing volume number. For the whole text, it is true that I had to
focus on the essentials, presenting them in a detailed and elaborate form, sometimes
consciously sacrificing certain elegance. It goes without saying that after the basic
course, secondary literature is needed to deepen the understanding of physics and
mathematics.

The special theory of relativity belongs to the classical theories and is thus
advisably taught immediately after classical mechanics (Vols. 1 and 2) and elec-
trodynamics (Vol. 3). Due to this reason, the special theory of relativity, with its
relativistic extension of classical mechanics and especially of electrodynamics,
is presented as Vol. 4 in the underlying textbook series. The mathematically
demanding nature of electrodynamics and therewith also of special theory of
relativity makes practicing the application of concepts and methods especially
mandatory. In this context, the exercises which are offered to each of the subsections
play an indispensable role for effective learning. The elaborate solutions of exercises
at the end of the book should not keep the learner from attempting an independent
treatment of the problems but should only serve as a checkup of one’s own efforts.

The special theory of relativity discussed in Vol. 4 deals with the dependence
of physical statements on the reference system of the observer. Important in this
connection are the inertial systems for which Newton’s law of inertia is valid without
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x Preface to Volume 4

any contribution of pseudo forces. According to Einstein’s principle of equivalence,
inertial systems basically are all on an equal footing. However, they are no longer
transformed into each other by the Galilean transformation known from nonrela-
tivistic mechanics but rather by the yet to be derived Lorentz transformation. The
most fundamental consequence of Lorentz transformation consists in an intimate
entanglement of space and time coordinates, from which a series of spectacular
phenomena evolve. Some of them seem to even contradict the so-called common
sense. Terms such as space, time, simultaneity, etc., must be thoroughly reconsid-
ered. Einstein’s second postulate states that the velocity of light in the vacuum at all
space points once and for all is constant and in particular is completely independent
of the kind of motion performed by the light source. From this postulate, the special
form of the decisive Lorentz transformation matrix can be derived. The key issue of
the special theory of relativity consists in verifying the physical laws and the cogent
conclusions of mechanics and electrodynamics regarding their compatibility with
respect to the Lorentz transformation between inertial systems. Deviations of the
relativistically correct mechanics from the “familiar” Newtonian mechanics become
evident above all when the relative velocities of physical systems are comparable
to the velocity of light. The special theory of relativity leads, therefore, in this
sense, to something like a superordinate mechanics that contains the nonrelativistic
formulation as the limiting case for small relative velocities.

This volume on the special theory of relativity arose from lectures I gave at the
German universities in Münster and Berlin. The animating interest of the students
in my lecture notes has induced me to prepare the text with special care. The present
one as well as the other volumes is thought to be the textbook material for the study
of basic physics, primarily intended for students rather than for teachers.

I am thankful to the Springer company, especially to Dr. Th. Schneider, for
accepting and supporting the concept of my proposal. The collaboration was always
delightful and very professional. A decisive contribution to the book was provided
by Prof. Dr. A. Ramakanth from the Kakatiya University of Warangal (India). He
deserves a lot of thanks!

Berlin, Germany Wolfgang Nolting
May 2016
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Chapter 1
Basic Physical Principles

We start with a definition. Which concept is connected to the term

theory of relativity?

It is about the theory of the dependence or the invariance, as the case may be, of
physical statements on the reference system of the observer. In particular, the

special theory of relativity

deals with the equal status of all inertial systems, where the transformations
between the different inertial systems are no longer brought about by Galilean,
but by

Lorentz transformations.

As we will see, this means an intimate and at first glance surprising entanglement
of space and time coordinates. As the decisive starting points for the theory we will
get to know two postulates, namely the

equivalence principle

and the

principle of the constancy of velocity of light.

The main consequence will lead to a revision of the terms

space, time and simultaneity

and will affirm the

light velocity as the absolute limiting velocity

and demonstrate the

equivalence of energy and mass.

© Springer International Publishing Switzerland 2017
W. Nolting, Theoretical Physics 4, DOI 10.1007/978-3-319-44371-3_1

1



2 1 Basic Physical Principles

The Lorentz transformation refers only to uniformly straight-line relative motions
of the considered systems and thus does not tell anything about systems which are
accelerated relative to each other.

The

general theory of relativity

can be characterized as the theory of the fundamental equivalence of all space-time
systems. Starting point here is the postulate of the proportionality between the heavy
mass and the inertial mass (Sects. 2.2.1 and 2.2.2, Vol. 1). A very important result
exposes the assumption that the space-time scheme has to be chosen euclidean as
a prejudice. By a suitable choice of the metric a more transparent representation
of the cosmos can be achieved. The space structure turns out to be dependent on
the distribution of matter. The basic laws of mechanics follow in the framework of
the General Theory of Relativity from the principle that a mass point, which is not
influenced by electromagnetic forces, chooses in the space-time continuum just the
‘shortest way’. Problems such as the light-ray bending in the gravitational field of
the sun or the red-shift of the spectral lines of atoms in strong gravitational fields
find unique explanations by the general theory of relativity.

The mathematical procedure for finding the above-mentioned ‘shortest way’ in
a non-euclidean metric is not at all a simple task. However, the General Theory of
Relativity is not the topic of this basic course. The reader must be referred to the
relevant special literature.

Why and when is the Special Theory of Relativity necessary? The experimental
experience teaches us that the postulates and definitions in the so far discussed form
(Vol. 1) become invalid whenever the relative velocities v come close to the velocity
of light c:

v � c .v � c/ :

Then the ‘relativistic corrections’ are indispensable, which are unimportant, though,
for small velocities v. In this sense the theory of relativity represents in a way the
completion of classical physics. From that it follows a ‘new’ classical physics which
correctly incorporates the ‘old’ (Newtonian) physics (Vol. 1) as the limiting case for
v � c.

Although quantum mechanics fulfills a similar functionality as a superordinate
theory, a direct relationship between the theory of relativity and quantummechanics
does not yet exist. There are regions in which quantum effects turn out to be
important while relativistic corrections are negligible and vice versa. The all in
all superordinate Relativistic Quantum Mechanics deals with situations where both
corrections are indispensable.
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1.1 Inertial Systems

In the so-called Newtonian mechanics, which was reviewed in the first volume of
this ‘Basic Course: Theoretical Physics’, fundamental terms such as the trajectory
r.t/ and the velocity v D Pr.t/ of a mass point presuppose the existence of a
reference system (coordinate system) as well as a time-measuring device (‘clock’).
For building coordinate systems, walls of a room, cardinal directions or something
similar may serve, while as a clock mechanical systems with spring, balance wheel,
and gear-wheels may be chosen as well as periodic motions like the earth’s rotation,
molecular oscillations etc.

The experimental observation now indicates that not in all reference systems
the Newtonian mechanics works. For instance, in rotating coordinate systems
it becomes correct only if certain rotation-caused pseudo forces (inertia forces,
centrifugal forces) (Sects. 2.4 and 2.2.5, Vol. 1) are further added to the driving
forces. That leads to the conception which is called

Newton’s fiction.

and can be summarized by the following two points:

1. There does exist the absolute space (‘cosmic (world) ether’). This is unchange-
able and immovable and does not create any resistance towards the motion of
material bodies. The motion of the relative space (partial space) relative to the
absolute space may lead to the fact that the basic laws of mechanics are no longer
valid. Only those relative spaces which are at rest or in a uniform straight-line
motion within the absolute space leave the basic laws invariant.

2. It does exist an absolute time, i.e. a ‘standard clock’ existing somewhere in the
cosmic ether.

Both postulates eventually prove to be untenable. Point 1 can at first be generalized
in the sense that we do not postulate the absolute space but start from the
indisputable fact that there indeed exist systems in which Newton’s physics is
undoubtedly valid. At this point we need to repeat some considerations of Sect. 2.2.3
in Vol. 1, in order to make it clear once more, in detail, which preconditions have
been used.

Definition 1.1.1 We denote as an inertial system a reference system in which
Newton’s law of motion (inertia)

F D mRr

is valid without the assistance of any artificially introduced pseudo forces.
A system that rotates relative to an inertial system thus can not be an inertial

system. We have learned in Sects. 2.2.4 and 2.2.5 of Vol 1 that then certain terms are
to be added to the force equation which describe the rotation (centrifugal, Coriolis
forces).



4 1 Basic Physical Principles

Fig. 1.1 Two inertial
systems moving uniformly in
straight-line relative to each
other. Demonstration of the
Galilean transformation

Assertion 1.1.1 Let † be an inertial system; if the system †0 moves uniformly in
straight-line with respect to † and coincides with † at the time t D 0, then †0 is
also an inertial system.

Proof Let r be the space vector for the point P in †, r0 that for P in †0 (Fig. 1.1).
†0 moves relative to † with the constant velocity v. Then obviously:

r D r0 C vt H) Pr D Pr0 C v H) Rr D Rr 0 :

Hence:

F D mRr D mRr 0 D F0 q. e. d.

This proof uses as an important presumption that the time scale is the same in both
the systems. For, when differentiating we have assumed as a matter of course that
t D t0. Later we will see that this presumption must be seriously checked.

Without loss of generality we can assume that the constant relative velocity v lies
parallel to the z-axis. Then the transition † ! †0 is mediated by a

Galilean transformation

x D x0 ; y D y0 ; z D z0 C vt ; t D t0 : (1.1)

The last relation is normally left out because of being apparently perfectly natural. In
the case that the Galilean transformation is valid, we cannot detect by mechanical
experiments a uniform straight-line movement (in rough approximation the path
of the earth) relative to the world ether. However, perhaps this can be detected
by optical experiments, e.g. by inspecting the velocity of light in different inertial
systems:

A source of light at the origin of † emits spherical waves which propagate with
the velocity of light c. For the space vector r of a certain point on the wave front it
thus holds in †:

Pr D cer I er D r
r

:
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But the wave velocity seen from †0 should then have the form, provided that the
Galilean transformation is valid:

Pr0 D cer � v

It means that the wave velocity would be dependent on the direction with jPr0j ¤ c.
In †0 the waves would then be no longer spherical waves! In case this is true, then,
we would have the possibility to define the absolute space. It would be just that
reference system †0 in which spherical waves are observed, i.e.:

Pr D cer

All the other inertial systems would exhibit the above-mentioned directionality.
This can be checked rather simply experimentally!

1.2 Michelson-Morley Experiment

A.A. Michelson (Nobel prize 1907) designed an experimental set-up which should
be able to measure with extreme accuracy the just discussed directionality of the
wave velocity of light, provided it really exists. The arrangement is sketched in
Fig. 1.2.

Coming from a light source L, a light beam hits a mirror S0, which is covered on
the front side by a metal layer so that it is semitransparent. A part of the beam is
reflected at S0, travels to the mirror S2, is reflected there again, goes through S0 and
arrives finally at the observation device B (telescope). The other part of the beam
permeates S0, impinges the mirror S1, is there reflected and subsequently reflected
once more at S0, in order to interfere at the observation point B with the first partial
beam. Normally one puts into the course of beam S0 � S2 a compensation plate

Fig. 1.2 Schematic set-up of
the Michelson-Morley
experiment
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in order to realize that this partial beam travels through the same thickness of glass
as the other one. If monochromatic light is used then one observes at B constructive
interference of the two partial beams if their optical path lengths differ by an integer
multiple of the wavelength �:

ı D .L02 C L20/ � .L01 C L10/
ŠD m � I m 2 Z :

Lij are the optical path lengths of the single sections:

Lij D
tSjZ

tSi

c dt D c
�
tSj � tSi

� I i; j D 0; 1; 2 :

The transit times

�ji D tSj � tSi

are obviously dependent on the velocity of the ether if the absolute space does really
exist and the light possesses in this space a non-directional velocity c. Let us now
inspect in detail the transit times of the two partial beams:

1. Horizontal paths:

S0 ! S1: On this stretch we have to take into account the earth’s velocity v
which we assume to be along the horizontal. Assuming the validity of the
Galilean transformation we can apply the additivity of the velocities. The
velocity of the light relatively to the apparatus is therefore c� v. We obtain as
transit time �10 for the path S0 ! S1:

�10 D l1
c � v

:

S1 ! S0: On the way back the relative velocity amounts to cC v. The light is
now travelling against the ether wind. That yields the transit time:

�01 D l1
cC v

:

The total transit time of the first partial beam on the way S0 ! S1 ! S0 is thus
given by:

�1 D l1
c � v

C l1
cC v

D 2
l1
c

1

1 � v2=c2
: (1.2)
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Fig. 1.3 Calculation of the
transit time of the light in the
Michelson-Morley
experiment

2. Vertical paths:
The transit times for the forward and back path are now of course equal,

�20 D �02. However we have to take into account the co-movement of the
mirror S0 (Fig. 1.3). The velocity of the light is c since the beam now always
moves perpendicular to the ether wind. For the total way we then have:

xy D c �20 D
q

l22 C v2�2
20 D yz :

This yields as the transit time �2 of the second partial beam:

�2 D �20 C�02 D 2l2
c

1p
1 � v2=c2

: (1.3)

The two partial beams thus exhibit the following difference of the optical path
lengths:

ı D c.�2 ��1/ D 2

 
l2p

1 � v2=c2
� l1

1 � v2=c2

!
ŠD m� : (1.4)

Now the apparatus is rotated by an angle of 90ı so that the ways of the light l1
and l2 relatively to the ether are just interchanged. This leads to another path-length
difference:

ı0 D c
�
�0

2 ��0
1

� D 2

 
l2

1 � v2=c2
� l1p

1 � v2=c2

!
ŠD m0� : (1.5)
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Interesting now is the difference of the two path-length differences:

S D ı0 � ı D 2 .l1 C l2/

 
1

1 � v2=c2
� 1p

1 � v2=c2

!

D 2 .l1 C l2/

�
1C v2

c2
C : : : � 1 � 1

2

v2

c2
C : : :

�
:

This means:

S �!
v2 � c2

.l1 C l2/
v2

c2
: (1.6)

S causes a shift of the interference pattern by r interference stripes where r is
given by

r D S

�
D .l1 C l2/ v2

� c2
: (1.7)

Hence, the rotation of the apparatus by �=2 in the described sense should lead to a
shift of the interference stripes according to S. Let us estimate this by use of some
realistic numerical values:

From the concept of the experiment it is of course not uniquely predetermined
what is to be taken as ‘ether velocity’ v. However, it is reasonable to accept the
orbital velocity of the earth as v so that

v D 3 � 104 m

s

is a good measure of the motion relative to the ether. Taking, furthermore, for the
wavelength of the light � D 5000Å D 5 � 10�7 m, one would observe a shift in the
interference pattern by a full stripe, which means S D �, provided

1 D .l1 C l2/
9 � 108

9 � 1016 � 5 � 10�7 m
” .l1 C l2/ D 50m :

Michelson performed his first experiment with a path length of

l1 D l2 D 1:2m

This corresponds to a shift of about 0; 05 interference stripes and would have
definitely been observable. In a subsequent experimental arrangement built up
together with Morley the optical path length had been enhanced by a factor 10 by
use of multiple reflections.
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Result:
Not the slightest interference shift could be observed! The velocity of light is

obviously the same in all directions and independent of the relative uniformly
straight-line motions of the observer, the carrying medium and the source of the
light.
Conclusion:

The Galilean transformation can not be correct! It has to be replaced by a
transformation which guarantees the constancy of the velocity of light in all inertial
systems.

One should notice: The physical equivalence of inertial systems is not at all put
into question, but only the type of transformation between such systems.

1.3 Einstein’s Postulates

Einstein’s interpretation of the unexpected outcome of the Michelson-Morley
experiment was ingeniously simple. The problem concerning the interpretation of
this experiment, in the last analysis, is a consequence of blind acceptance of the
assumptions which appear to be plausible even though the relevant facts are not
strictly proved. So it turns out that the assumption of an

absolute time,

being indispensable for the validity of the Galilean transformation, is as untenable
as the assumption of an

absolute space.

How does one at all measure times? Each time measurement happens, strictly
speaking, by an identification of a simultaneity. One compares, e.g., the hands of a
clock with the arrival of a train. However, it might become problematic if one has
to measure the time-correlation between two events which happen at different space
points. In mechanics we try to describe the motion of a body by determining its
position coordinates as functions of time. For this purpose we indeed need the time
correlations between events at different space points. This is necessary even for any
measurement of velocity since

v D ra � rb

ta � tb

requires a time measurement ta at the position ra and a time measurement tb at the
position rb. But how is now the simultaneity at ra related to that at rb? The a-clock
and the b-clock have to be synchronized. That would not be a problem, though, if
the information from a to b could be transmitted with infinitely high velocity. This
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is, however, impossible since even electromagnetic waves propagate with high but,
in the end, finite velocity. However, the

synchronization of clocks

might be realized according to the following recipe. A light signal is emitted from a
to b and then reflected by a mirror at b. The time needed for the distance a! b! a
is then measurable with the a-clock, only. This procedure makes sense, however,
only under the very decisive precondition that the light velocity is exactly the same
from a to b as from b to a. For it holds then

ta ! b D 1

2
ta ! b ! a D tb ! a ;

and the synchronization of the a- and b-clocks would be possible without further
ado.

Einstein has incorporated this precondition as postulate into his new physics
which is called

Special Theory of Relativity.

The full theory is based on two postulates:

Postulate 1.3.1 (Equivalence Principle) All physical laws and the results of all
experiments are the same in all systems which move uniformly rectilinearly relative
to one another.

Postulate 1.3.2 (Principle of the Constancy of the Velocity of Light) The veloc-
ity of light in the vacuum for all times and at all sites has the constant value c, and
is in particular independent of the motion of its source.

From Postulate 1.3.1 follows that only relative motions of two systems can
be measured. Strictly speaking, this is nothing new compared to the Newtonian
mechanics, only inertial systems are to be precisely defined. The actual new aspect is
given by Postulate 1.3.2. Today it is uniquely experimentally confirmed; however, at
the time, when Einstein proposed it, it was not at all commonly accepted, but rather,
understandably, widely mistrusted. It provokes, as we will see, a radical rethinking
with regard to familiar terms such as space, time, and simultaneity.

We are now left with the following issues:

1. We have to look for the correct transformation between inertial systems which
keeps the velocity of light constant. It should go over into the Galilean transfor-
mation for v � c.

2. We have to check the physical laws concerning their transformation behavior
with respect to such a correct transformation.
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1.4 Lorentz Transformation

1.4.1 Matrix of Lorentz Transformation

Let † and †0 be inertial systems moving uniformly rectilinear to one another where
we can assume, e.g., † to be at rest and †0 to be moving. Both the systems shall be
identical to each other at the time t D 0:

t D 0 W † � †0 :

At this point in time t D 0, a light source at the origin of †, which then just coincides
with that of †0, emits a signal. This leads to a spherical wave propagating in the rest
system † with the velocity of light c:

c2t2 D x2 C y2 C z2 : (1.8)

According to Postulate 1.3.2 this relation must hold for the light propagation in all
inertial systems. i.e. must be fulfilled also in †0!

c2t02 D x02 C y02 C z02 : (1.9)

The requirement that the signal in both systems is propagating as spherical wave
can be satisfied obviously only by a co-transformation of the time .t ” t0/. That
results in an entanglement of space and time coordinates. But how does such a
transformation, which transfers † into †0, look like?

From reasons, which become clear later, we indicate the Cartesian coordinates
from now on by superscript indexes:

r D �x1; x2; x3
� D .x; y; z/ :

It is common to introduce a fourth (or better ‘zeroth’) coordinate:

x0 D c t : (1.10)

The result of the Michelson-Morley experiment can be expressed as an
invariance condition:

�
x0
�2 �

3X
� D 1

.x �/2 ŠD �x00�2 �
3X

� D 1

�
x0��2 (1.11)

We will see later (Sect. 1.5) that both the sides of this equation can be interpreted as
the length square of a four-vector (4-vector) in an abstract four-dimensional

Minkowski space.
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Then the required transformation, which we will already call now

Lorentz transformation,

obviously represents a

rotation in the Minkowski space,

where the length of the rotated four-vector does not change. To these rotations
belong of course also the normal rotations of systems in the real three-dimensional
visual space whose origins are at rest to one another. One can show:

The general Lorentz transformation is equal to the special Lorentz transforma-
tion multiplied by the space rotation.

By the

special Lorentz transformation

one understands the transformation between systems which move uniformly recti-
linear relative to one another with parallel axes. The following considerations are
restricted to these special Lorentz transformations. But then we can of course also
assume that the relative velocity v between † and †0 is directed parallel to the
x3 D z-axis.

The connection between the coordinates in † and those in †0 must necessarily
be linear because otherwise, e.g., a uniform rectilinear motion in † would not be
such a motion in †0, what would contradict the equivalence postulate. This explains
the following ansatz:

x0� D
3X

� D 0

L�� x � : (1.12)

Because of the special direction of v the 1- and 2-components will be the same in
both systems:

x01 D x1 I x02 D x2 : (1.13)

The components x03; x00 must be independent of x1 and x2 since no point of the
x1; x2-plane is distinguished in any way. A shift in this plane must not have any
impact. Therewith we already know the rough structure of the transformation
matrix L:

L �

0
BB@

L00 0 0 L03

0 1 0 0

0 0 1 0

L30 0 0 L33

1
CCA : (1.14)
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We now exploit the invariance condition (1.11):

�
x00�2 � �x03�2 ŠD �x0

�2 � �x3
�2

:

This means:

�
x00�2 � �x03�2 D �

L00x0 C L03x3
�2 � �L30x0 C L33x3

�2
D �

L2
00 � L2

30

� �
x0
�2 C �L2

03 � L2
33

� �
x3
�2

C2 .L00L03 � L30L33/ x0x3 :

Comparing coefficients yields:

L2
00 � L2

30 D 1 ;

L2
33 � L2

03 D 1 ;

L00L03 � L30L33 D 0 :

This system of equations can be solved by the following ansatz:

L33 D L00 D cosh� ;

L30 D L03 D � sinh� :

The arbitrariness of sign in the last row will later be eliminated by the requirement
that for v � c the Lorentz transformation must agree with the Galilean transforma-
tion! We therewith come to the intermediate result:

L �

0
BB@

cosh� 0 0 � sinh�

0 1 0 0

0 0 1 0

� sinh� 0 0 cosh�

1
CCA :

To eventually also fix �, we consider the motion of the origin of †0. Seen from † it
holds for this special point:

x3 D v t D v

c
x0 :

That yields the following relationship:

0 D x03 D cosh� x3 � sinh� x0 D x0
�v

c
cosh� � sinh�

�

H) tanh� D v

c
:
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With

cosh� D 1p
1 � tanh2 �

D 1p
1 � v2=c2

and

sinh� D cosh� tanh� D v=cp
1 � v2=c2

as well as the usual abbreviations,

ˇ D v

c
I � D �.v/ D 1p

1 � v2=c2
; (1.15)

we have finally found the
matrix of the special Lorentz transformation

L �

0
BB@

� 0 0 �ˇ�

0 1 0 0

0 0 1 0

�ˇ� 0 0 �

1
CCA : (1.16)

The determinant fulfills

detL D �2 � ˇ2�2 D 1 : (1.17)

L can therefore be interpreted as rotation (see Sect. 1.6.6, Vol. 1). The rows and
columns of the matrix L, though, are not orthonormal. Because of their importance
we want to write down once more the

equations of the special Lorentz transformation

in their original Cartesian form:

x0 D x ; (1.18)

y0 D y ; (1.19)

z0 D z � v tp
1 � v2=c2

D � .z � ˇc t/ ; (1.20)

t0 D t � �v=c2
�

zp
1 � v2=c2

D �

�
t � ˇ

c
z

�
: (1.21)
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We further add to this derivation, some discussion remarks:

1. For small relative velocities v � c the Lorentz transformation (1.18) to (1.21)
turns into the Galilean transformation (1.1).

2. c is obviously the maximal relative velocity because for v > c the coordinate z0
would not be real any more.

3. The inverse transformation matrix

L�1 �

0
BB@

� 0 0 ˇ�

0 1 0 0

0 0 1 0

ˇ� 0 0 �

1
CCA (1.22)

obviously results from (1.16) simply by the substitution v ! �v, i.e. ˇ ! �ˇ.
That is of course absolutely to be expected since, seen from †0, the system †

moves with the velocity �v.
4. One denotes the position vector of the Minkowski space

x � �

0
BB@

x0

x1

x2

x3

1
CCA �

0
BB@

c t
x
y
z

1
CCA (1.23)

as a four-vector. Each array of numbers

a � �

0
BB@

a0

a1

a2

a3

1
CCA �

�
a0

a

�
; (1.24)

which transforms by a Lorentz transformation in the same manner as the
position vector (1.23) is likewise called a four-vector. In analogy to the position
vector the 0-component is always denoted as ‘time-component’ and the .1; 2; 3/-
components as ‘space-components’. In particular, according to (1.11), the

length square of a � W �a0
�2 �

3X
� D 1

.a �/
2 D �a0

�2 � a2

must be a Lorentz invariant. This definition will later become clear by the
introduction of a corresponding scalar product. In Sect. 2.1 we will distinguish
contravariant from covariant four-vectors and indicate that by different positions
of the index �: .a�; a �/.

5. Let us agree upon some specialties of the notation. We index the components of
four-vectors with Greek letters �; �; �; : : : where the full four-vector is marked
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by a typical component, e.g. x �. The ‘normal’ three-component vectors are
represented by bold letters where Latin letters k; l; m; : : : denote their component
indexes.

According to Einstein’s summation convention one agrees to sum over the
same Greek indexes of physical quantities standing next to each other where, for
simplicity, the sigma-sign is frequently and intentionally omitted, e.g.:

x0� D
3X

� D 0

L�� x � ” x0� D L�� x � : (1.25)

Let us now discuss some important consequences of the Lorentz transformation.

1.4.2 Relativity of Simultaneity

The consequence of the Lorentz transformation which goes most strongly against
common sense concerns certainly the definition of simultaneity. Each inertial system
has its own criterion of simultaneity. The absolute time does not exist! Time turns
out to be a function of the used reference system and is fixed by the reading of a
clock. The latter does not represent a problem at all as long as all time measurements
are performed in one and the same inertial system. We could synchronize the clocks,
as described previously, by a light signal. But how do we synchronize clocks which
belong to different inertial systems which are on the move relative to one another?
That turns out to be problematic since the term simultaneity is relative, i.e. different
for different inertial systems † and †0 which are moving relative to one another.
That one can easily understand as follows:

†: Think that two synchronized clocks at z1 and z2 have determined that two
events occur simultaneously at these sites:

t1 D t2 ” �t D 0 :

†0: The same two events, seen from this inertial system, though, do not appear as
coincidental:

t01 D
t1 � .v=c2/z1p

1 � v2=c2
I t02 D

t1 � .v=c2/z2p
1 � v2=c2

H) �t0 D t01 � t02 D �
v

c2
.z2 � z1/ ¤ 0 : (1.26)

It is now of course an interesting question whether even the sequence of two events
may depend on the state of motion of the observer. Is it perhaps even possible to
interchange cause and effect of a causal connection of two events? Let us clarify
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this point by the following consideration: In † let t2 > t1. Then, the sequence of the
events is surely retained in †0, too, provided:

0 < t02 � t01 D �
h
t2 � t1 � v

c2
.z2 � z1/

i
:

That means we must have

t2 � t1 >
v

c

z2 � z1

c
:

Since v < c the sequence remains definitely unchanged for

t2 � t1 � z2 � z1

c
:

If the two events are causally connected in † then the information process, which
links cause and effect, occurs with finite velocity Nv � c. This means:

t2 � t1 D z2 � z1

Nv � z2 � z1

c
:

Hence, cause and effect can not be interchanged. The sequence of not causally
connected events, however, can indeed be reversed when observed from †0.

1.4.3 Time Dilatation

In the inertial system †, a clock at the position z emits two light signals with the
time separation

�t D t1 � t2 :

In the moving system †0 these light signals are observed at the times

t01 D �
�

t1 � v z

c2

�
I t02 D �

�
t2 � v z

c2

�
;

i.e. with a separation:

�t0 D t01 � t02 D � �t D �tp
1 � .v2=c2/

> �t : (1.27)

The time interval �t appears extended for the moving observer in †0. He will say:
The stationary clock is slow! The same will be stated, by the way, also by a person
in † who observes a clock in †0.
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This phenomenon which appears paradoxial at first glance becomes less myste-
rious if one inspects the measuring process in detail. In † (at rest) two events.z; t1/
and .z; t2/ are measured with one and the same clock at z. In contrast, in †0
(moving) the measurement needs two clocks, namely one at

z0
1 D � .z� v t1/ ;

and the other at

z0
2 D � .z� v t2/ ;

i.e. with the separation:

z0
1 � z0

2 D � v.t2 � t1/ ¤ 0 :

The measuring processes in the two inertial systems are thus not at all equivalent,
hence, the results cannot be paradoxical, either. In †0 we have to synchronize the
clocks which are placed at different sites. This synchronization leads, in the end, to
the effect of the time dilatation. The time span, which is observed by one and the
same clock at one and the same site, is called the

proper time �	 .

It is always smaller than the difference of the two timings in the moving system †0.
Today the phenomenon of time dilatation is observable by almost everyday

experiments. One can exploit the radioactive decay of unstable particles for rather
exact time measurements. The law of radioactive decay delivers a precise prediction
how many of the at the time t D 0 present particles are not yet decayed at the
time t > 0. The number of the not yet decayed particles is thus a measure of the
elapsed time. This effect is used, for instance, for the age estimation of prehistorical
excavations with the aid of unstable C14-isotopes. According to B. Rossi and
D.B. Hall (Phys. Rev. 59, 223 (1941)) the time dilatation can experimentally be
verified very impressively as follows:

1. �-mesons, which are created during the penetration of the cosmic radiation into
the earth’s atmosphere, are positively or negatively charged, and unstable.

�˙ �! e˙ C 
1 C 
2 ;

e˙ W electron (positron) ;


1 W neutrino ;


2 W antineutrino :

2. �˙ hits the detector, comes there to rest, and decays after a certain time according
to 1. Both events, the arrival of the �˙ in the detector as well as the emitting of
the e˙, are detectable. The law of decay is therefore known.
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3. Two detectors, one on a hill of height L, the other on sea level, count the incoming
�-mesons per unit-time .

4. The velocity of the mesons is close to c:

v
�
�˙� � 0:994 c :

The travel time ttr for the trip between the two detectors is therewith calculable.
By the use of the law of decay it is then possible to determine the number of not
yet decayed particles which are expected to reach the second detector.

5. Observation: Many more �-mesons than the expected number arrive at the
second detector.

6. Explanation: The number of particles that actually arrive is not determined by ttr,
but by the proper time 	tr. The law of decay follows the co-moving clock:

	tr D ttr
�
� 1

9
ttr .D 0:109 ttr/ :

The mesons which move with the velocity v � 0:994 c relative to the detectors
represent a clock which is slow by a factor 1=9.

1.4.4 Contraction of Length

How is a length measurement to be performed? One places a scale on the length
to be measured and reads out simultaneously the positions of the end points. That
sounds trivial, if the length and the reference system † are in relative rest to one
another:

l D z1 � z2 :

For the length measurement in the inertial system †0, which is moving relative to †

with the velocity v, we need at first the positions of the end points:

z0
1 D � .z1 � v t1/ I z0

2 D � .z2 � v t2/ :

What is to be inserted for t1; t2? The reading out has to be done simultaneously also
in †0, i.e. it must be t01 D t02, and not just t1 D t2. This means according to (1.21):

t1 � v

c2
z1

ŠD t2 � v

c2
z2 :

Hence it is

t1 � t2 D v

c2
.z1 � z2/
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and therewith

l0 D z0
1 � z0

2 D �

�
z1 � z2 � v2

c2
.z1 � z2/

	
:

This means eventually:

l0 D l

s
1 � v2

c2
: (1.28)

A rod of length l, at rest in †, appears in †0 contracted by the factor .1�ˇ2/1=2 < 1.
The decisive point is that the length measurement prescribes that the positions of
the end edges have to be read out simultaneously. The criterion of simultaneity,
however, is different for different inertial systems. That influences the results of the
length measurements.

1.4.5 Addition Theorem of Velocities

Could it not be possible to reach, by a sequence of Lorentz transformations, relative
velocities which are even greater than the velocity of light c?

†1�!
v1

†2�!
v2

†3„ ƒ‚ …
v3 �!

I vi D viez ; i D 1; 2; 3 :

If simply v3 D v1 C v2 were to be taken, then, e.g., from v1 > c=2 and v2 > c=2 it
would have to follow v3 > c. But this would contradict Einstein’s postulate.

Let us assume that the relative velocities v1; v2; v3 are all oriented in z-direction:

�i D
�
1 � ˇ2

i

��.1=2/ I ˇi D vi

c
I i D 1; 2; 3 : (1.29)

Then it holds at first for the direct transition:

†1 ! †3 W

x �

.3/ DbL3x �

.1/ ;

bL3 D

0
BB@

�3 0 0 �ˇ3�3

0 1 0 0

0 0 1 0

�ˇ3�3 0 0 �3

1
CCA : (1.30)
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Identical results must come out if we change from †1 to †3 via †2:
†1 ! †2 ! †3 W

x �

.3/ D
�bL2

bL1

�
x �

.1/ ;

bL2
bL1 D

0
BB@

�2 0 0 �ˇ2�2

0 1 0 0

0 0 1 0

�ˇ2�2 0 0 �2

1
CCA

0
BB@

�1 0 0 �ˇ1�1

0 1 0 0

0 0 1 0

�ˇ1�1 0 0 �1

1
CCA

D

0
BB@

�1�2.1C ˇ1ˇ2/ 0 0 ��1�2.ˇ1 C ˇ2/

0 1 0 0

0 0 1 0

��1�2.ˇ1 C ˇ2/ 0 0 �1�2.1C ˇ1ˇ2/

1
CCA : (1.31)

The comparison of (1.30) and (1.31) leads to

�3 D �1�2 .1C ˇ1ˇ2/ ;

ˇ3�3 D �1�2 .ˇ1 C ˇ2/ :

From that we get the ‘addition theorem of relative velocities’:

ˇ3 D ˇ1 C ˇ2

1C ˇ1ˇ2

: (1.32)

It is therewith in any case ˇ3 D .v3=c/ < 1, if ˇ1; ˇ2 < 1. This can be read off
directly from (1.32):

1 � ˇ3 D .1 � ˇ1/ .1 � ˇ2/

1C ˇ1ˇ2

> 0 : (1.33)

Therefore in all situations c remains the limiting velocity! Let us discuss two special
cases:

1. v1 D v2 D 1=2 c:
In this case it is ˇ1 D ˇ2 D 1=2 and therewith ˇ3 D 4=5:

v3 D 4

5
c ¤ v1 C v2 :
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2. v1 D c I v2 � c arbitrary:
It is now ˇ1 D 1, so that, according to (1.32), ˇ3 becomes independent of v2:

ˇ3 D 1C ˇ2

1C ˇ2

D 1 :

This corresponds to Postulate 1.3.2 from Sect. 1.3. The light emitted from a
source propagates in the vacuum with the velocity c, independently of the
velocity v of the light source.

Let us finally generalize the considerations of this chapter a bit. Let † and †0
be two inertial systems for which the formulae (1.18) to (1.21) of the Lorentz
transformation are valid. Let an object in † have the velocity

u � �ux; uy; uz
� D

�
dx

dt
;

dy

dt
;

dz

dt

�
: (1.34)

What is then its velocity in †0?

u0 � �u0
x; u0

y; u0
z

� D
�

dx0

dt0
;

dy0

dt0
;

dz0

dt0

�
: (1.35)

The Lorentz transformation yields:

dx0 D dx ;

dy0 D dy ;

dz0 D �.dz� v dt/ ;

dt0 D �
�

dt � v

c2
dz
�
D �

�
1 � v uz

c2

�
dt :

We obtain therewith the components of the velocity in †0:

u0
x D

dx0

dt0
D 1

�

ux

1 � v uz

c2

; (1.36)

u0
y D

dy0

dt0
D 1

�

uy

1 � v uz

c2

; (1.37)

u0
z D

dz0

dt0
D uz � v

1 � v uz

c2

: (1.38)
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Analogously one finds for an object in † if it possesses the velocity u0 in †0:

ux D 1

�

u0
x

1C v u0
z

c2

; (1.39)

uy D 1

�

u0
y

1C v u0
z

c2

; (1.40)

uz D u0
z C v

1C v u0
z

c2

: (1.41)

Let us check at the end the Lorentz invariance of the velocity of light, i.e. we verify
whether with u2 D c2 we also get u0 D c2 as required from the special theory of
relativity.

Let u2 D c2:

u0 D 1

�2

1�
1 � v uz

c2

�2

�
u2

x C u2
y

�C .uz � v/2

�
1 � v uz

c2

�2

D
�
1 � v uz

c2

��2
��

1 � v2

c2

� �
u2

x C u2
y

�C u2
z C v2 � 2v uz

	

D
�
1 � v uz

c2

��2
�

c2 � v2

c2

�
c2 � u2

z

�C v2 � 2v uz

	

D c2

�
1� v uz

c2

�2

"
1C v2 u2

z

c4
� 2

v uz

c2

#
D c2 I q. e. d.

1.5 Light Cone, Minkowski Diagram

We go back once more to the general results of Sect. 1.4.1 and develop a sometimes
quite useful geometrical illustration of the special theory of relativity.

With Eq. (1.23) we have already got to know the position vector of the
Minkowski space:

x � �

0
BB@

x0

x1

x2

x3

1
CCA �

0
BB@

c t
x
y
z

1
CCA � .c t; x/ : (1.42)
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The length square

s2 D c2t2 � x2 D c2t2 �
3X

� D 1

.x �/2 (1.43)

is according to Postulate 1.3.2 of the special theory of relativity a Lorentz
invariant, i.e. a physical quantity which does not change in consequence of a
Lorentz transformation.

We can represent the position vector (1.42) in a space-time diagram, the so-called

Minkowski diagram,

whose axes are given by x; y; z and c t. For the time axis one applies c t, in order
that all axes have the dimension of a length. Since the x- and y-components remain
invariant with the appropriate Lorentz transformations, we can fix x D y D 0.

Each point P of the Minkowski space represents an ‘event’. Its coordinates are
the axes intercepts which are found when one puts straight lines parallel to the axes
through the point P. As light signal one denotes the straight line through the origin
defined by s2 D 0. In the case of equal scaling of the space- and time-axes it is just
the angle bisector in the z-ct-diagram (Fig. 1.4).

The description of an event in the Minkowski diagram can be carried out
in arbitrarily many different manners, corresponding to the respective reference
system. The inertial system, in which the space- and time-axes are perpendicular
to one another, is by no means physically special compared to †0 whose axial
directions can be determined as follows: We assume that the origins of coordinates
of † and †0 coincide at the time t D t0 D 0. The

†0-time axis

is then defined by z0 � 0 � �.z� v t/. This means z D v t or

c t D 1

ˇ
z : (1.44)

Fig. 1.4 To the construction
of a Minkowski diagram light signal

gauge hyperbola
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The †0-time axis is thus in † a straight line with the slope .1=ˇ/ > 1. It is therefore
always located between the †-time axis and the light signal (Fig. 1.4). The

†0-space axis

is fixed by t0 � 0 � �
�
t � .v=c2/z

�
. That means in this case:

c t D ˇ z : (1.45)

The space axis thus represents in † a straight line with the slope ˇ < 1, therefore
lies always between the †-space axis and the light signal.

Of course, also the scaling of the axes will change after the Lorentz transforma-
tion †! †0. The

gauging of the axes

is done according to the following recipe: Since s2 is a Lorentz invariant and x and
y are not affected by the transformation, the expression

Os2 D s2 C x2 C y2 D .c t/2 � z2

must also be a Lorentz invariant. The geometric locus of all points which obey

Os2 D �1” z2 D .c t/2 C 1

represents in † an equilateral hyperbola which intersects the z-axis .t D 0/ at
z D 1 (Fig. 1.4). The scale unit in † is therewith fixed. All points of the hyperbola
correspond to position vectors of the (projected) length Os2 D �1. But since this is
a Lorentz invariant, these position vectors all have in †0 also the (projected) length
�1. They hence fulfill the relation

z0 D �c t0
�2 C 1 :

The intersection point the gauge hyperbola with the z0-axis fixes therewith the scale
unit z0 D 1 (see Fig. 1.4).

Analogously, the point of intersection of the hyperbola, defined by

Os2 D C1” .c t/2 D z2 C 1 ;

with the t-axis .z D 0/ provides the time unit in †, the intersection point with the
t0-axis .z0 D 0/ the time unit in †0. The gauging of the axes is therewith complete.
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Fig. 1.5 Light cone and
world line in the Minkowski
space

time-like

(future)

time-like

(past)

space-like

space-like

world line

light cone

The length square of a four-vector is, as already exploited several times, not
necessarily positive. One therefore distinguishes:

s2 D .c t/2 � x2

8̂
<̂
ˆ̂:

> 0 W time-like four-vector ;

D 0 W light-like four-vector ;

< 0 W space-like four-vector :

(1.46)

The Minkowski space can be decomposed accordingly (Fig. 1.5). All time-like four-
vectors are found within the so-called

light cone

whose surface is defined by s2 D 0. Because of v � c the trajectories of physical
particles in the Minkowski space, which are called

world lines ,

lie, all of them, within the light cone provided they start at t D 0 at the origin. The
world lines of the photons are located on the light cone. All space-like four-vectors
are outside the light cone. Since s2 is a Lorentz invariant, each four-vector retains in
all inertial systems its character to be either space-like or time-like.

Let us finally consider in somewhat more detail the distance between two world
events P1.c t1; x1/ and P2.c t2; x2/:

s2
12 D c2 .t1 � t2/

2 � jx1 � x2j2 : (1.47)

With the four-vectors x �

.1/ D .c t1; x1/, x �

.2/ D .c t2; x2/ the difference vector x �

.1/�x �

.2/

is of course also a four-vector and the length square s2
12 (space-time interval) hence

a Lorentz invariant. Without loss of generality for the following statements we can
assume that .x1�x2/ has the direction of the z-axis. It is therefore jx1�x2j D z1�z2

if z1 > z2.
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1. Space-like distance .s2
12 < 0/

It follows from s2
12 < 0 that z1 � z2 > c .t1 � t2/. This means that the two

events P1 and P2 are not connectable by a light signal. Therefore,

no causal correlation

can exist between them. It is always possible to find a Lorentz transformation into
an inertial system †0 where the two events P1 and P2 appear simultaneously:

c
�
t01 � t02

� D � .c .t1 � t2/� ˇ .z1 � z2//
ŠD 0 :

Because of z1 � z2 > c.t1 � t2/ it exists of course always a ˇ < 1 with

ˇ .z1 � z2/
ŠD c .t1 � t2/ ;

so that t01 D t02. The sequence of world events with space-like distances can
always be interchanged by proper Lorentz transformations.

2. Time-like distance .s2
12 > 0/

s2
12 > 0 means c.t1 � t2/ > z1 � z2. The world events P1 and P2 are therefore

bridgeable by a light signal. A

causal correlation is possible!

However, because of c.t1 � t2/ > z1 � z2 and therewith even more

c .t1 � t2/ > ˇ .z1 � z2/

by no Lorentz transformation a simultaneity is reachable. Cause and effect can
not be interchanged.

Because of

z0
1 � z0

2 D � Œ.z1 � z2/ � v .t1 � t2/�

one can transform, though, into an inertial system for which z0
1 D z0

2 so that the
events take place at the same site.

The special case s2
12 D 0 is denoted as light-like distance.

1.6 Exercises

Exercise 1.6.1 A spacecraft moves with the velocity v D 0:8 c. As soon as it
reaches a distance d D 6:66 � 108 km from the earth, a radio signal is emitted from
the earth station to the spaceship. How much time does the signal need

1. according to a clock at the earth station,
2. according to a clock in the spaceship.
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Exercise 1.6.2 Let † and †0 be two inertial systems. †0 moves relative to † with
the velocity v D .3=5/ c in the z-direction. At the time t D t0 D 0 both the systems
coincide: † D †0. Let now an event in †0 have the coordinates:

x0 D 10m I y0 D 15m I z0 D 20m I t0 D 4 � 10�8 s :

Determine the coordinates of the event in †!

Exercise 1.6.3 Let † and †0 be two inertial systems. †0 moves relative to † with
the velocity v in the z-direction. Two events happen in † at the times t1 D z0=c and
t2 D z0=2c at the sites .x1 D 0; y1 D 0; z1 D z0/ and .x2 D 0; y2 D y0; z2 D 2z0/.
How large must the relative velocity v be to let the events happen simultaneously in
†0? At which time t0 will the events then be observed in †0?

Exercise 1.6.4 In an inertial system † two events happen at the same place with a
time separation of 4 s. Calculate the spatial distance of the two events in an inertial
system †0, in which the events appear with a time separation of 5 s!

Exercise 1.6.5 In an inertial system † two simultaneous events have a spatial
separation of 3 km on the z-axis. In †0 this distance amounts to 5 km. Calculate
the constant velocity v, with which †0 moves relative to † in z-direction. Which
time separation do the events have in †0?

Exercise 1.6.6 Let † and †0 be two inertial systems. †0 moves relative to † with
the velocity v, where the direction of v is arbitrary, i.e. not necessarily parallel to
the z-axis of †. Find the explicit formulae of the Lorentz transformation! Derive the
transformation matrixbL! Write downbL for the special case v D v ex!

Exercise 1.6.7 Let † and †0 be two inertial systems moving relative to one another
with the velocity v D v ez D const.

1. A rod at rest in † is at angle of 45ı to the z-axis. At which angle does it appear
in †0?

2. A particle in † has the velocity u D .v; 0; 2 v/. Which angle does its trajectory
form with the z-axes in † and †0?

3. A photon leaves the origin of † at the time t D 0 in a direction which forms an
angle of 45ı with the z-axis. What is the angle in †0?

Exercise 1.6.8 A rocket of the ‘proper length’ L0 flies with constant velocity v

relative to a reference system † in z-direction. At the time t D t0 D 0 the tip of the
rocket passes the point P0 in †. In this moment a light signal is sent out from the tip
of the rocket to the end of the rocket.

1. After what time does the light signal reach the end of the rocket in the rest system
of the rocket?

2. At which point of time does the signal reach the end of the rocket in the rest
system † of the observer?

3. When does the observer register that the end of the rocket passes the point P0?
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Exercise 1.6.9 Let †, †0 be two inertial systems which are moving relatively to
one another with the velocity v D v ez. A particle in † has the velocity

u D �ux; uy; uz
� D

�
dx

dt
;

dy

dt
;

dz

dt

�
:

Let

u D .0; c; 0/ :

Calculate u0!

Exercise 1.6.10

1. Can there be a causal connection between the following events?

(a) x1 D 1m I y1 D 2m I z1 D 3m I t1 D 3 � 10�8 s ;

x2 D 4m I y2 D 2m I z2 D 7m I t2 D 6 � 10�8 s ;

(b) x1 D 7m I y1 D 0 I z1 D �2m I t1 D 1:1 � 10�7 s ;

x2 D 4m I y2 D 5m I z2 D C3m I t2 D 0:9 � 10�7 s

2. Is it possible to find an inertial system in which these events appear simultane-
ously? With what a velocity and in which direction would this system have to
move relative to that in part 1.?

Exercise 1.6.11 �-mesons (muons) are generated when cosmic radiation pene-
trates the earth’s atmosphere at the height

H � 3 � 104 m :

In their rest system the�-mesons have a lifetime (proper time) of 	 � 2�10�6 s. This
means c	 � 600m. Nevertheless, almost all �-mesons reach the earth’s surface.
This one understands only if the velocity of the �-mesons is comparable with the
velocity of light c.

1. How strong should the deviation of the muon velocity from c,

" D c � v

c
;

be in order that the muons reach the surface of the earth?
2. Which height of the particle generation H0 does an observer feel , who co-moves

with the muon?

Exercise 1.6.12 Light that comes from a source L falls onto a semitransparent
mirror S0, and is partially reflected to S3, and also partially transmitted to the mirror
S1. S1 and S2 are totally reflecting mirrors. In this way one finally gets two coherent
partial beams which interfere at the telescope B. The light rays traverse on the whole
the distance 2l in a tube, in which water is running with the flow velocity v, the
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Fig. 1.6 Schematic set up for
the Fizeau-experiment
(Exercise 1.6.12)

one partial ray parallel, the other antiparallel to the water flow (Fig. 1.6). In B an
interference pattern is observed which corresponds to the difference of the optical
path lengths c �t with

�t D 2l

 
1

c
n � f v

� 1
c
n C f v

!
:

n is the index of refraction of the water. Calculate the Fresnel’s dragging coefficient f
and demonstrate that it is compatible with Einstein’s postulates and does not
necessarily require Newton’s fiction of the world ether. (Fizeau experiment.)

1.7 Self-Examination Questions

1. Which idea is behind the term theory of relativity?
2. What is understood by Newton’s fiction?
3. What is an inertial system?
4. Define the Galilean transformation! What is said by this transformation about

the times t and t0 in the inertial systems † and †0?
5. Describe the Michelson-Morley experiment!
6. What is the result of the Michelson-Morley experiment?
7. Formulate Einstein’s postulates!
8. What does the matrixbL of the special Lorentz transformation say? Sketch its

derivation!
9. Which connection exists between the times t and t0 in inertial systems † and †0

which are moving relative to one another in a uniform straight-line?
10. How can we find out directly from the transformation matrix that c is the

maximal relative velocity of inertial systems?
11. Which relationship exists between the Lorentz and Galilean transformations?
12. Interpret the relativity of simultaneity!
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13. Is it possible to interchange cause and effect of a causal correlation simply by
variation of the inertial system?

14. Describe the phenomenon of time dilatation!
15. What is denoted as proper time?
16. How can the time dilatation be experimentally proven?
17. How is a length measurement to be performed?
18. A rod resting in † has the length l. What does a corresponding measurement of

the length yield in the inertial system †0, which moves relative to † with the
velocity v D const?

19. What is the relativistic addition theorem for relative velocities?
20. Let †1; †2; †3 be inertial systems. †2 moves relative to †1 in z-direction with

the velocity v1 D c, †3 relative zu †2 with v2 D c=2. What is the velocity v3

with which †3 moves relative to †1?
21. What does one understand by a Minkowski diagram?
22. What defines the light signal?
23. Let † and †0 be two inertial systems which move relative to each other with the

velocity v D const in z-direction, while the origins of coordinates coincide at
the time t D t0 D 0. Space and time axes of † are perpendicular to one another.
How does one determine the space and time axes in †0?

24. How does one scale the axes of the Minkowski diagram?
25. What are time-like, light-like, space-like four-vectors?
26. Define the light cone!
27. Is it possible to convert by change of the inertial system a time-like into a space-

like four-vector?
28. What is to be understood by a space-like (time-like) distance of two world

events?
29. Why can a causal correlation between two world events with space-like distance

not exist?
30. When can the sequence of two world events be interchanged by a proper

Lorentz transformation, for space-like or for time-like distance?



Chapter 2
Covariant Four-Dimensional Representations

2.1 Covariant and Contravariant Tensors

2.1.1 Definitions

In Sect. 1.4 we got to know the correct transformation between inertial systems
which fulfills Postulate 1.3.2 of Sect. 1.3. The point now is to write down all the
physical laws in

covariant form,

i.e. to formulate it in such a manner that it remains form-invariant under Lorentz
transformations. That corresponds to the equivalence of all inertial systems accord-
ing to Postulate 1.3.1.

The Newtonian laws of classical mechanics are form-invariant only under
Galilean transformations which, as we now know, are correct only in the limit
v � c. Consequently, in the relativistic region the basic laws of mechanics and also
electrodynamics will no longer have the familiar form. Our next task must therefore
be to check the form-invariance of the physical laws under Lorentz transformations.
This inspection is most advisably done in the four-dimensional Minkowski space.
The Lorentz transformation represents in this space a rotation of the four-vectors
which keeps their length squares invariant.

Already in non-relativistic physics, form-invariance of physical laws under
rotation in the normal three-dimensional space was to be required. This, however,
was trivially fulfilled in general. A physical law is a mathematical equation. A

scalar law W a D b

is of course invariant under rotations since neither a nor b changes thereby. A

vectorial law W a D b” aj D bj I j D 1; 2; 3

© Springer International Publishing Switzerland 2017
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is covariant under rotations, i.e., the components change, but such that a0
j D b0

j
is valid for all j and therewith a0 D b0. Analogous statements hold for tensors of
arbitrary rank.

The prescription is therewith clear: Form-invariance of a physical law under
Lorentz transformations is realized if and only if the law is given in covariant four-
dimensional form, i.e., if all the terms of the respective equation are

four-tensors of the same rank

Under this perspective we will reprocess in Sect. 2.2, the basic laws of mechanics
and in Sect. 2.3 those of electrodynamics.

At first, however, we still have to comment in more detail on the above-
mentioned prescription. For this purpose we present some formal considerations
about calculations in the four-dimensional Minkowski space, where we have to
in particular recall the tensor term introduced in Sect. 4.3.3 of Vol. 1. Actually it
is nothing but an extension of the vector term. An nk-tuple of numbers in an n-
dimensional space represents a tensor of k-th rank if these numbers transform under
a change of the system of coordinates .† ! †0/ according to certain fixed rules.
The interesting space here is the Minkowski space with n D 4. The change of
coordinates is due to a Lorentz transformation which we have derived ultimately
from the invariance of the length square

s2 D �x0
�2 � x2 D c2t2 � x2 � y2 � z2

of the four-vector (1.42),

x � � .c t; x/ :

The transformation is linear

x0� D L� � x � ;

where the matrix elements L� � are defined by (1.16). Take notice of the summation
convention (1.25). A

tensor of k-th rank,

which belongs to the space-time point x �, is now defined by its transformation
behavior under the transformation x � ! x0�. As to the Minkowski space, this tensor
is a 4k-tuple of numbers which behave under the transformation of coordinates

x � ! x0� D L� � x �

according to certain fixed rules. The numbers are called

components of the tensor.
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The abstract symbols of these components carry k indexes where each of them runs
from n D 0 to n D 3. For our purposes here only k D 0; 1; 2 are interesting.

(1) Tensor of zeroth rankD four-scalar
This tensor has 40 D 1 component (world-scalar). It is a single quantity

which remains invariant under a Lorentz transformation. An example is the
length square s2.

(2) Tensor of first rank = four-vector
This tensor possesses 41 D 4 components. One distinguishes two types of

vectors (world-vectors):

(2a) Contravariant four-vector
We mark this type of vector by superscripts:

a � � �a0; a1; a2; a3
�

: (2.1)

The components transform with the change of the inertial system .x � !
x0�/ as follows:

a0� D @x0�

@x �
a � : (2.2)

Since the change of coordinates shall be due to a Lorentz transformation
it holds in particular:

a0� D L� � a � : (2.3)

Examples are

(˛/ the position vector x � � .c t; x; y; z/,
(ˇ/ the differential dx �, because for this the chain rule works:

dx0� D
3X

� D 0

@x0�

@x �
dx � :

(2b) Covariant four-vector
This type of four-vector is marked by subscripts:

b� D .b0; b1; b2; b3/ : (2.4)

The components transform as follows:

b0
� D

@x �

@x0� b� : (2.5)
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This means in the special case of the Lorentz transformation:

b0
� D

�
L�1

�
��

b� : (2.6)

The gradient of a scalar function ' is an important example:

b� D
�

@'

@x0
; : : : ;

@'

x3

�
;

b0
� D

�
@'

@x00 ; : : : ;
@'

@x03

�
; (2.7)

x
 D x

�
x0�� :

It obviously holds:

b0
� D

@'

@x0� D
@'

@x


@x


@x0� D
@x


@x0� b
 :

This corresponds to the definition equation (2.5).

(3) Tensor of second rank
This type of tensor possesses 42 D 16 components. One distinguishes now

three kinds of so-called world-tensors:

(3a) contravariant tensor
The components F ˛ˇ change under a Lorentz transformation as follows:

.F �
/
0 D @x0�

@x˛

@x0


@xˇ
F ˛ˇ ; (2.8)

.F �
/
0 D L�˛ L
ˇ F ˛ˇ : (2.9)

We see that ‘rows’ and ‘columns’ transform like contravariant vectors. As
an example we cite the tensor product of two contravariant four-vectors
a � and b �, which consists of a total of 16 numbers (components):

F �
 D a � b
 I �; 
 D 0; : : : ; 3 : (2.10)

This tensor product transforms as:

.F �
/
0 D a0� b0
 D @x0�

@x˛

@x0


@xˇ
a˛ bˇ D L�˛ L
ˇ F ˛ˇ :
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(3b) covariant tensor
That is now a system of 16 components F˛ˇ which transform according

to

F0
�
 D

@x˛

@x0�
@xˇ

@x0
 F˛ˇ ; (2.11)

F0
�
 D

�
L�1

�
˛�

�
L�1

�
ˇ


F˛ˇ (2.12)

In this case ‘rows’ and ‘columns’ transform like covariant vectors. The
tensor product of two covariant four-vectors is an obvious example.

(3c) mixed tensor
The 16 components F ˇ

˛ transform in this case in the following manner

�
F


�

�0 D @x˛

@x0�
@x0


@xˇ
F ˇ

˛ ; (2.13)

�
F


�

�0 D �
L�1

�
˛�

L
ˇ F ˇ
˛ : (2.14)

We see that second-rank tensors can always be written as matrices. The
elements of a normal matrix, though, do not necessarily transform like the
components of a tensor. The formula (2.14), however, corresponds to the
relation of the linear algebra,

F0 D S�1 F S ;

which indicates how a matrix F changes under a coordinate transformation
into a matrix F0. The mixed tensor of second rank is therefore indeed a
matrix in the strict sense, the covariant and contravariant tensors are not.

The tensor product of a covariant and a contravariant four-vector
represents an example for a mixed tensor of second rank:

F

� D a
b� :

Completely analogously one defines tensors of still higher rank. For instance, in the
example

�
F �


��

�0 D @x0�

@x˛

@xˇ

@x0

@x�

@x0�
@xı

@x0� F ˛
ˇ�ı

the transformation behavior of a mixed tensor of fourth rank is defined. For our
purposes here, however, only k D 0; 1; 2-tensors are relevant.
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2.1.2 Calculation Rules

Which mathematical principles are to be followed by the just introduced tensors?

1. One multiplies a tensor with a number by multiplying each component with this
number.

2. Two tensors are summed component by component!
3. By the

contraction of a tensor

one understands the equalizing of a superscript and a subscript, which automat-
ically involves a summation. The rank of the tensor reduces thereby from k to
k � 2.

Examples

(a) We put in the above mixed tensor of fourth rank 
 D �:

�
F



��

�0 D @x0


@x˛

@xˇ

@x0

@x�

@x0�
@xı

@x0� F ˛
ˇ�ı D

@xˇ

@x˛

@x�

@x0�
@xı

@x0� F ˛
ˇ�ı

D @x�

@x0�
@xı

@x0� F ˛
˛�ı:

This expression transforms like a covariant tensor of second rank, as the
comparison with (2.11) demonstrates.

(b) The trace of a matrix F �

 is defined as the sum of its diagonal elements:

F �

 �! F



 :

The result is a tensor of zeroth rank, i.e. a scalar. The trace of a matrix is thus
invariant under coordinate transformations.

(c) The contraction of a tensor product

a �b
 �! a
b


results of course in a scalar .k D 2 ! k D 0/. It is equivalent to the scalar
product in orthogonal coordinates. One therefore defines for four-vectors:

scalar product

.b; a/ � b˛ a˛ : (2.15)

This quantity is, as a scalar, Lorentz invariant. That can easily be checked:

�
b0; a0� D b0̨ a0˛ D @x �

@x0˛
@x0˛

@x�
b� a� D @x �

@x�
b� a� D b� a � D .b; a/ :
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(d) As example (ˇ) after (2.3) we got to know the differential dx � of the position
vector in the Minkowski space as a special contravariant four-vector:

dx � � �dx0; dx1; dx2; dx3
� D .c dt; dx; dy; dz/ : (2.16)

Therewith we build the Lorentz invariant length square,

.ds/2 D �
dx0
�2 � �dx1

�2 � �dx2
�2 � �dx3

�2
D .c dt/2 � dx2 � dy2 � dz2 ; (2.17)

and write in short:

.ds/2 D �˛ˇ dx˛ dxˇ : (2.18)

The coefficients �˛ˇ are the components of the metric tensor (see (2.86),
Vol. 2), which in the Special Theory of Relativity is symmetric .�˛ˇ D �ˇ˛/

and diagonal:
covariant metric tensor

�˛ˇ �

0
BB@
C1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1
CCA : (2.19)

If one writes the invariant length square .ds/2 as scalar product of dx with
itself,

.ds/2 D .dx; dx/ D dx˛ dx˛ ; (2.20)

then one obviously gets by comparison with (2.18):

dx˛ D �˛ˇ dxˇ : (2.21)

This suggests the definition of the contravariant metric tensor by the
following ansatz:

dx˛ D �˛ˇ dxˇ : (2.22)

That means:

dx� D ��˛ dx˛ D ��˛ �˛ˇ dxˇ :
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But this can be correct only if

��˛ �˛ˇ D ı
�

ˇ D



1; if � D ˇ ;

0 otherwise :
(2.23)

We read off from (2.19) that for the Special Theory of Relativity covariant
and contravariant metric tensor are obviously identical:

�˛ˇ D �ˇ˛ D �˛ˇ : (2.24)

4. Without explicit proof we generalize (2.21) and (2.22), respectively, to a pre-
scription how to transform covariant into contravariant tensors and vice versa.
Let us speak of

raising and lowering an index

D:::˛:::
::: D �˛ˇ D:::

:::ˇ::: ; (2.25)

D:::
:::˛::: D �˛ˇ D:::ˇ:::

::: : (2.26)

In this way one can almost arbitrarily ‘play’ with the positions of the indexes.
Let us put the rule to a test:

D:::
:::˛::: D �˛ˇ D:::ˇ:::

::: D �˛ˇ �ˇ� D:::
:::� :::

D ı�
˛ D:::

:::� ::: D D:::
:::˛::: :

In particular, we can now transform with the above prescription each contravari-
ant four-vector

a � � �a0; a1; a2; a3
� D �a0; a

�
(2.27)

into the corresponding covariant four-vector:

a� � .a0; a1; a2; a3/ D
�
a0;�a

�
: (2.28)

That means for the scalar product (2.15):

.b; a/ D b˛ a˛ D �˛ˇ bˇ a˛ D b0 a0 � b � a : (2.29)

The last summand represents the normal three-dimensional scalar product
between the space components of the two four-vectors. Note that the scalar prod-
uct can be written as the sum of the products of the corresponding components
only when one combines the covariant components of one of the four-vectors
with the contravariant components of the other four-vector.
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Examples

s2 D .x; x/ D c2t2 � r2 ;

.ds/2 D .dx; dx/ D .c dt/2 � .dr/2 :

2.1.3 Differential Operators

We obtain the transformation property of the differential operators, which are so
important for Theoretical Physics, by a direct application of the chain rule:

@

@x0� D
@x˛

@x0�
@

@x˛
I x˛ D x˛

�
x0�� :

The differentiationwith respect to the component of a contravariant four-vector thus
transforms as the component of a covariant four-vector. This applies directly to the
nabla-operator:

Gradient

@� � @

@x �
�
�

1

c

@

@t
;r
�

: (2.30)

r is the normal three-dimensional gradient (see (1.269), Vol. 1). Using the general
prescription (2.26) we find for the derivative with respect to a covariant component:

@� � @

@x�

�
�

1

c

@

@t
;�r

�
: (2.31)

The divergence (see (1.278), Vol. 1) is, as the scalar product of, respectively, a
covariant gradient with a contravariant four-vector and a contravariant gradient with
a covariant four-vector, which is of course Lorentz invariant:

Divergence

@�a � � @�a� D 1

c

@

@t
a0 Cr � a : (2.32)

Eventually, an important operator, in particular for electrodynamics, is the

d’Alembert operator �

(see (4.30), Vol. 3):

�� � @�@� � @�@� D 1

c2

@2

@t2
�� : (2.33)
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� D r2 is the Laplace operator (see (1.282), Vol. 1). As a scalar product the
d’Alembert operator, too, is Lorentz invariant.

2.2 Covariant Formulation of Classical Mechanics

Let us now reformulate the basic laws of classical mechanics in such a way that they
become form-invariant under Lorentz transformations. For this purpose we have to
present them in covariant four-dimensional form, i.e., all terms in such an equation
must be four-tensors of the same rank. Furthermore, in the limit v � c the ‘familiar’
relationships should be reproduced.

2.2.1 Proper Time, World-Velocity

As world-line, we have denoted in Sect. 1.5, the trajectory of a physical particle. It
is about the totality of all events

x � D .c t; x; y; z/ ;

passed by the object in this space in course of time. Then dx � is the differential
change along the world-line. The square of the differential length

.ds/2 D dx � dx� D c2.dt/2 � .dr/2 (2.34)

is, as already found out, as a scalar product a world-scalar, i.e., a Lorentz invariant.
But the same must then be valid also for the ‘time-quantity’

.d	/2 D 1

c2
.ds/2 D .dt/2 � 1

c2
.dr/2 ; (2.35)

since the velocity of light c has according to the fundamental Postulate 1.3.2 in
Sect. 1.3 the same value in all inertial systems. We understand the physical meaning
of d	 as follows. Since .d	/2 is invariant, we can choose for an interpretation just
a special, most useful reference system. A proper choice could be, for instance, the
co-moving inertial system in which the particle is momentarily at rest:

dx �0 � �c dt0; 0; 0; 0
�

: (2.36)

It follows then for d	 :

.d	/2 D 1

c2
dx0� dx0

� D
�
dt0
�2

: (2.37)
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d	 thus corresponds to a time interval on a clock which is carried along, i.e., to
an interval of the proper time discussed in Sect. 1.4.3. Since d	 as world-scalar
is Lorentz invariant, the proper time interval will of course not change when we
transform it into a system † which is moving compared to the particle:

c2.d	/2 D dx � dx� D c2.dt/2 � .dx/2 � .dy/2 � .dz/2

D c2.dt/2

�
1 � v2

c2

�
:

The result agrees with the statement in Sect. 1.4.3 that the ‘proper time always goes
slow’:

dt D d	p
1 � v2=c2

D � d	 > d	 : (2.38)

v is the relative velocity of the particle within the system †.
Let us now come back to the term of the

world-velocity u �,

which is logically defined by the displacement dx � of the particle in the Minkowski
space within the proper time d	 :

u � � dx �

d	
: (2.39)

It is about a contravariant four-vector for which we can also write:

u � D dx �

dt

dt

d	
D 1p

1 � v2=c2

dx �

dt
D �

dx �

dt

H) u � D 1p
1 � ˇ2

�
c; vx; vy; vz

� D �.v/ .c; v/ : (2.40)

The norm of u � is, as scalar product, Lorentz invariant having therewith a rather
simple physical meaning:

u � u� D �2
�
c2 � v2

� D c2 : (2.41)

2.2.2 Force, Momentum, Energy

The Newtonian law of inertia (see (2.42), Vol. 1),

Fi D m
d

dt
vi I i D x; y; z ; (2.42)
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retains, as we now know, its validity only when the relative velocity is sufficiently
small (v � c). It is therewith form-invariant under a Galilean transformation.
We now look for the relativistic generalization of this law in the four-dimensional
Minkowski space. Thereby we have of course to again require, as a boundary
condition, that for v � c all the relations for the space components reduce to the
form (2.42).

Unfortunately, the space components of the required four-force can not simply be
identified with the Fi. These do not exhibit the correct transformation behavior. This
is of course not surprising since we have seen that the space components of the four-
velocity u � in (2.40), for instance, are not the vi, but rather they have to bemultiplied
by the factor �.v/. It is, however, necessary that the space components of each
four-vector transform under the ordinary three-dimensional rotations as the familiar
space vectors. We know, though, that the transformation behavior with respect to
rotations of an ordinary three-dimensional space vector does not change when the
vector is multiplied by a scalar. The space components of the four-force we are
looking for should therefore be products of the Fi with suitable scalar functions of
ˇ D v=c, which reduce to 1 for v � c.

In order to get the relativistic generalization of Newton’s law (2.42) we at first
replace the velocity v by the four-velocity u �,

v �! u � ;

since only the space components of u � reduce to vi ˇ � 1. Furthermore, we will
replace on the right-hand side of Eq. (2.42) the time t by the proper time 	 ,

t �! 	 ;

because only the proper time is Lorentz invariant. The term

d

d	
u �

has therewith the dimension of an acceleration and is a contravariant four-vector
which transforms as x � (see Exercise 2.5.3). Finally we still consider the inertial
mass m of the particle to be a Lorentz invariant since only ‘space and time’ are
in the Special Theory of Relativity subject to a critical revision; however, not the
‘matter’. That leads us to the following ansatz for the relativistic generalization of
the force equation (2.42):

m
d

d	
u � D K � : (2.43)

The contravariant four-vector K � is called

Minkowski force
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Both sides of the force equation are world-tensors of first rank so that the covariance
with respect to Lorentz transformations is assured. However, we still have to
determine explicitly the components of the Minkowski force K �.

To their determination we recall the other version of the non-relativistic law of
inertia:

Fi D d

dt
pi I i D x; y; z : (2.44)

This law requires the conservation of momentum if no external forces act on the
particle. But this Newtonian form of the momentum conservation is not yet Lorentz
invariant. We can fix, however, the space-part of the relativistic momentum by
presuming a Lorentz invariant conservation of momentum for a force-free particle.
For this purpose we bring the force equation for the space components into a form
which is structurally rather similar to the law of inertia (2.44):

Ki D m
d

d	
ui D m �

d

dt
� vi I i D x; y; z : (2.45)

The conservation law of momentum is certainly Lorentz invariant when we fix by
comparison the momenta and forces as follows:

pri D m vip
1 � ˇ2

D � mvi ; (2.46)

Ki D Fip
1 � ˇ2

D �Fi ; (2.47)

i D x; y; z :

Fi are now, differently to (2.44), the relativistic force components Fi D d
dt pri. As

required these expressions reduce for v � c to the known, non-relativistic terms.
By discussing particle collisions in Sect. 2.2.3 we will realize that (2.46) is probably
the only conclusive relativistic generalization of the mechanical momentum.

The time component of the Minkowski force is still to be considered. To get it
we calculate:

K � u� D K 0 u0 �K � u D
�

m
d

d	
u0

�
u0 �

�
m

d

d	
u
�

� u

D 1

2
m

d

d	

�
u0 u0 � u � u

� D 1

2
m

d

d	
.u � u�/ D 1

2
m

d

d	
c2 :

Here we have exploited (2.29) and (2.41). Hence we have

K � u� D 0 : (2.48)
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But on the other-hand it also holds with (2.40) and (2.47):

K � u� D �K 0c � �2 F � v : (2.49)

The comparison with (2.48) gives us the zeroth force component:

K 0 D �
F � v

c
: (2.50)

Equations (2.47) and (2.50) lead to the complete version of the
Minkowski force

K � D �

�
F � v

c
; Fx; Fy; Fz

�
: (2.51)

The Newtonian law of inertia in the form of (2.43) is therewith relativistically
generalized.

Next we investigate the physical meaning of the time component of the
Minkowski force:

�
F � v

c
D m

d

d	
u0 D m �

d

dt
.� c/

H) F � v D d

dt

m c2p
1 � ˇ2

: (2.52)

The scalar product F � v corresponds to the work which the force F exerts per time-
unit on the particle with the mass m. In the non-relativistic mechanics this work
is identical to the time change of the kinetic energy T (see (2.226), Vol. 1). We
therefore choose the ansatz

F � v D d

dt
Tr ; (2.53)

where the index ‘r’ stands for relativistic. One obtains then by comparison
with (2.52) the

relativistic kinetic energy

Tr D m c2p
1 � v2=c2

D m�c2 : (2.54)

In the limit of small velocities .v � c/, we expect this quantity that also to reduce
to the familiar non-relativistic expression T D m

2
v2. But the expansion,

Tr D m c2

�
1 � v2

c2

��1=2

D m c2 C 1

2
m v2 C 3

8
m

v4

c2
C : : : ;
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shows that Tr does not actually reduce for small v=c to the non-relativistic kinetic
energy:

Tr �!
v=c � 1

m c2 C 1

2
m v2 : (2.55)

The ‘disturbing’ additional term m c2 is a constant which actually does not affect the
kinematics of the mass point. One could, for instance, subtract it on the right-hand
side of the definition equation (2.54) of Tr, since the relativistic kinetic energy can be
fixed by analogy from (2.53) to (2.54) anyway only up to an additive constant. Later
we will see, however, that a more profound physical meaning has to be ascribed to
this additive constant:

m c2 ” rest energy of the mass point :

We therefore retain it here.
By multiplying the four-velocity u � (2.40) with the mass m of the particle, we

can define a new contravariant four-vector which we interpret as
Four-momentum (world-momentum)

p � D m u � D m� .c; v/ : (2.56)

Inserting (2.40) we get:

p � D
�

Tr

c
; � m vx; � m vy; � m vz

�
�
�

Tr

c
; pr

�
: (2.57)

The space components thus correspond to the relativistic generalization (2.46) of
the mechanical momentum-vector p D m v,

pr D � p D mp
1 � v2=c2

v ; (2.58)

while the time component is essentially identical to the kinetic energy.
In the so far pursued line of argument the mass m is a scalar invariant property

of the particle. However, in all the important formulae m always appears in the
combination

m.v/ D � .v/ m D mp
1 � v2=c2

; (2.59)

which is therefore sometimes interpreted as ‘velocity dependent relativistic mass’.
The space components of the world-momentum,

pr D m.v/ v ; (2.60)
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then have formally the same form as in the non-relativistic mechanics. Strictly
speaking, that is the only reason for the introduction of m.v/. The symbol m without
argument then stands for m.0/ and means the ‘rest mass’ of the particle. The
relativistic kinetic energy Tr (2.54), too, can be written with m.v/ in a simpler way:

Tr D m.v/ c2 : (2.61)

Since m.v/ merely represents an abbreviated notation we will not make use of
the definition (2.59). It must be considered rather as somewhat inconvenient as it
clouds the fact that ‘mass’ as the direct measure of the ‘amount of matter’ should be
independent of the system of coordinates.

The norm of the four-momentum,

p �p� D T2
r

c2
� p2

r D m2u �u� D m2c2 ; (2.62)

as a scalar product is of course Lorentz invariant. We have therewith found for the

relativistic energy of a free particle

an alternative representation:

Tr D E D
q

c2p2
r C m2c4 : (2.63)

Because of the equivalence principle (Sect. 1.3) we have to conclude that

conservation of momentum W pr D � m v D const (2.64)

must be valid for a force-free motion in all inertial systems, i.e., it does not depend
on the choice of the reference system. But pr consists of the three space components
of the four-vector p �. Hence we have to conclude:

pr D const H) Tr D const : (2.65)

For, when one transforms the contravariant four-vector p � according to (2.2) to
another inertial system †0, new space components pr will come out, which also
depend on Tr. Were Tr ¤ const, then, consequently, the conservation of momentum
in †0 would no longer be valid:

momentum conservation” energy conservation.

In the Special Theory of Relativity via the world-momentum p �, there does exist a
close connection between these two laws of conservation.

From this result we draw a very important conclusion. As is well-known, p D
const is non-relativistically possible even if T ¤ const. Think of an exploding
grenade. The momenta of the fragments add together vectorially to the constant
which describes the momentum before the explosion, while the kinetic energy,
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as one knows, changes dramatically. The relativistic kinetic energy, in contrast,
cannot have changed! But because of Tr � m c2 C T (see (2.55)), that is only
possible if a change of the rest energy compensates the change of T during the
process. Since the velocity of light c is a universal constant this leads to

Einstein’s equivalence of mass and energy

�E D �m c2 : (2.66)

Let us illustrate the important meaning of this relation by some examples:

1. mass increase.
if one lifts 100 kg by 1 km upwards:

�m D 10�10 kg :

2. pair production:
The decay of a mass-less photon 
 into an electron .e�/ and a positron .eC/

is possible provided that

E
 � 2 me c2 D 1:022MeV :

The energy difference,

E
 � 2 me c2 D T .e�/C T
�
eC� ;

appears as the sum of the kinetic energies of the electron and the positron. The
reversal (pair annihilation),

eC C e� ! 
 ;

is of course also possible.
3. Mass-loss of the sun due to energy radiation:

�m

�t
� 4 � 1012 kg

s
:

4. atomic bomb
The total momentum remains unchanged after the explosion. It results,

however, in the release of a terribly high kinetic energy of the fragments due
to a mass-loss of about 0.1%.

5. nuclear fission, nuclear fusion.
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2.2.3 Elastic Collision

In the last section the relativistic form pr of the mechanical momentum has been
introduced more or less by analogy considerations. That was also valid for the
relativistic kinetic energy Tr. We now try to perform a more direct derivation of
these quantities with the assumption of

momentum and energy conservation in closed inertial systems

The focus is of course on the relativistic energies and momenta which are still to be
derived. The familiar non-relativistic momentum conservation law, for instance, is,
as we know, not Lorentz invariant. We start with the following ansatz,

pr D m.v/v I Tr D ".v/ ; (2.67)

where m.v/, as explained in connection with (2.61), is to be understood as an
abbreviation. The same also holds for ".v/. ".v/ as well as m.v/ are to be considered
at first as unknowns which must fulfill the boundary conditions

m.0/ D m I d"

dv2
.0/ D m

2
: (2.68)

They will be derived by inspecting the

elastic collision of two identical particles.

We can certainly assume that " is a monotonic function of v. Let us first discuss the
collision in the

center-of-mass system †0

of the two particles. We denote:

v0
a; v0

b W velocities before the collision ;

v0
c; v0

d W velocities after the collision :

In the center-of-mass system it must of course be

v0
a D u I v0

b D �u ;

where we can assume, without loss of generality, that u defines the direction of the
z-axis in †0. From the energy law in †0,

2 ".u/ D "
�
v0

c

�C "
�
v0

d

�
;

it must follow ".v0
c/ D ".v0

d/, since the particles are assumed to be identical. But
because of the monotony of ".v/ this means also v0

c D v0
d D u. Therefore, all
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Fig. 2.1 Velocities for the elastic collision

the four velocities have the same magnitudes. From the law of conservation of
momentum in †0,

m.u/u�m.u/u D m.u/
�
v0

c C v0
d

�
;

we can read off:

v0
c D �v0

d

With the notations used in Fig. 2.1, that yields:

v0
a D .0; 0; u/ I v0

b D .0; 0;�u/ ;

v0
c D .u sin˛; 0; u cos˛/ I v0

d D .�u sin˛; 0;�u cos˛/ :

The angle ˛ remains undetermined.
We now perform the analogous considerations for the inertial system †, which

moves relative to †0 with the velocity .�u/. For the particle velocities in † we apply
the transformation formulae (1.39) to (1.41):

va D
 

0; 0;
2 u

1C u2

c2

!
;

vb D .0; 0; 0/ ;

vc D
 

1

�

u sin˛

1C u2

c2 cos˛
; 0;

u.1C cos˛/

1C u2

c2 cos˛

!
;

vd D
 

1

�

�u sin ˛

1 � u2

c2 cos˛
; 0;

u.1� cos˛/

1� u2

c2 cos˛

!
;

� D
�

1 � u2

c2

��.1=2/

:
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The law of conservation of momentum, which we have already used for †0 and
which is valid, as per presumption, in all inertial systems,

m .va/ va C m .vb/ vb D m .vc/ vc Cm .vd/ vd ;

must be fulfilled for each component, thus in particular for the x-component:

0 D u

�

 
m .vc/

sin ˛

1C u2

c2 cos˛
�m .vd/

sin˛

1� u2

c2 cos˛

!
:

It follows:

m .vc/ D
1C u2

c2 cos˛

1 � u2

c2 cos˛
m .vd/ : (2.69)

This formula must be valid for all scattering angles ˛, therefore also for ˛ ! 0. In
this special case, however,

vc � va and vd � 0 ;

so that (2.69) reads

m .va/ D 1C u2

c2

1 � u2

c2

m.0/ : (2.70)

We reformulate the prefactor:

 
1 � u2

c2

1C u2

c2

!2

D
�
1C u2

c2

�2 � 4 u2

c2�
1C u2

c2

�2
D 1 � 1

c2

4 u2

�
1C u2

c2

�2
D 1 � v2

a

c2
D 1

�2
a

:

This yields in (2.70) m.va/ D �a m.0/. We can now drop the index a and take
m.0/ D m corresponding to the boundary condition (2.68):

m.v/ D mp
1 � v2=c2

: (2.71)

This is exactly the previous result (2.59). By insertion of this relation into the
ansatz (2.67) we obtain the required relativistic momentum of a particle of the mass
m and the velocity v:

pr D mp
1 � v2=c2

v : (2.72)
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This is indeed the expression (2.58) which we found previously by analogy-
arguments.

Now we further want to determine the kinetic energy Tr D ".v/ using the theory
of the elastic collision of the two identical particles. It holds in the inertial system †

since the particle b is ‘at rest’ before the collision:

" .va/C ".0/ D " .vc/C " .vd/ :

We investigate again the case ˛ ! 0, which affects only the right-hand side of the
energy equation. There appear only the magnitudes of the velocities vc and vd, for
which one finds:

vc D 1

1C u2

c2 cos˛

s
u2

�2
sin2 ˛ C u2.1C cos˛/2

vd D 1

1 � u2

c2 cos˛

s
u2

�2
sin2 ˛ C u2.1 � cos˛/2

One recognizes that vc and vd are even functions of ˛. Series expansions with
respect to the powers of ˛, which surely converge for ˛ ! 0, contain exclusively
even powers of ˛. This transfers to the energies ".vc/ and ".vd/, which we can
expand therefore in powers of ˛2:

" .va/C ".0/ D " .vc/j˛ D 0 C ˛2

�
d" .vc/

dv2
c

dv2
c

d˛2

�ˇ̌
ˇ̌
˛ D 0

C " .vd/j˛ D 0 C ˛2

�
d" .vd/

dv2
d

dv2
d

d˛2

�ˇ̌
ˇ̌
˛ D 0

CO �˛4
�

:

Because of

v2
c.˛ D 0/ D v2

a I v2
d.˛ D 0/ D v2

b D 0

it is left to be analyzed:

0
ŠD
�

d" .vc/

dv2
c

dv2
c

d˛2

�ˇ̌
ˇ̌
˛ D 0

C
�

d" .vd/

dv2
d

dv2
d

d˛2

�ˇ̌
ˇ̌
˛ D 0

:

Finally, we can still exploit the boundary condition (2.68):

0 D d" .va/

dv2
a

�
dv2

c

d˛2

�
˛ D 0

C m

2

�
dv2

d

d˛2

�
˛ D 0

: (2.73)
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To proceed we have to now expand the velocity squares v2
c and v2

d in ˛2:

v2
d D

�
1 � u2

c2
cos˛

��2 �
u2

�2
sin2 ˛ C u2.1 � cos˛/2

	

D
�

1 � u2

c2
C 1

2

u2

c2
˛2 CO �˛4

���2 �
u2

�2
˛2 CO �˛4

��

D �4

�
1C 1

2

u2

c2
˛2�2 CO �˛4
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D �2u2˛2 CO �
˛4
�

:

From this it follows:

�
dv2

d

d˛2

�
˛ D 0

D �2 u2 D u2

1 � u2

c2

: (2.74)

We used for the above expansion

.1C x/n=m D 1C n

m
xCO �x2

�
: (2.75)

This formula helps us also when expanding v2
c :

v2
c D

�
1C u2

c2
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��2 �
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�2
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�
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�
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˛4
��
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This leads to:

�
dv2

c

d˛2

�
˛ D 0

D 1

4
v2

a

�
2u

c2
va C 1

�2
� 2

�
D 1

4
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1C u2
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� u2
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� 1
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4
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1 � u2

c2

�2

1C u2

c2

D �1

4
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a

�
1C u2

c2

� 
1 � u2

c2

1C u2

c2
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:

The last factor we have already evaluated in connection with (2.70):

�
dv2

c

d˛2

�
˛ D 0

D �1

4

v2
a

�2
a

�
1C u2

c2

�
: (2.76)

We insert (2.76) and (2.74) into (2.73):

d" .va/

dv2
a

D m

2

u2

1 � u2

c2

4�2
a

v2
a

�
1C u2

c2

� D m

2
�2

a

1C u2

c2

1 � u2

c2

D m

2
�3

a D m c2 d

dv2
a

�
1 � v2

a

c2

��1=2

:

When we integrate this expression and drop from now on the index a we are finally
left with:

Tr D ".v/ D m c2p
1 � v2=c2

C d : (2.77)

Except for the constant d,

d D ".0/ �m c2 ; (2.78)

we could reproduce by an analysis of the elastic collision the relativistic energy of
the free particle (2.54) which we found in the last section more or less by analogy-
arguments. At the end of this section we will explicitly prove that d D 0 and
therewith necessarily

".0/ D m c2 .rest energy/ (2.79)

In order to avoid unnecessary paperwork let us put right now d D 0 for the following
considerations.

According to the line of argument, followed in this section, we do not yet know
at this point anything about a four-vector p �. It is therefore an interesting question
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to ask how energy Tr and momentum pr behave under a Lorentz transformation:

†
v! †0 I �v D

�
1 � v2

c2

��1=2

:

In † the particle may have the velocity

u D �ux; uy; uz
�

;

the relativistic momentum

pr D
�
prx; pry; prz

� D m �u
�
ux; uy; uz

�
; �u D

�
1 � u2

c2

��1=2

and the relativistic energy:

Tr D m c2�u :

The corresponding ‘primed’ quantities u0; p0
r; T 0

r point out the properties of the
particle in †0. For the transition u ! u0; pr ! p0

r and Tr ! T 0
r we use again

the transformation formulae (1.39) to (1.41):

u0
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1

�v
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1 � v uz
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I u0
z D
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1� v uz

c2

:

Therewith we calculate at first � 0
u:
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From that it follows with

1 � u02

c2
D 1�

1 � v uz

c2

�2

1

�2
v

1

�2
u

the required expression for � 0
u:

� 0
u D �u�v

�
1 � v uz

c2

�
: (2.80)

The transformed momenta are now easily determinable:

p0
rx; y D m � 0

uu0
x; y D m �u�v

�
1 � v uz

c2

� 1

�v

ux; y

1 � v uz

c2

D m �uux; y D prx; y;

p0
rz D m � 0

uu0
z D m �u�v

�
1 � v uz

c2

� uz � v

1 � v uz

c2

D �v .m �uuz �m �uv/ D �v

�
prz � v

Tr

c2

�
:

Just as easily we find with (2.80) the transformed energy:

T 0
r D m c2� 0

u D m c2�u�v

�
1 � v uz

c2

�

D �v

�
m c2�u � m �uuzv

� D �v .Tr � v prz/ :

Let us compile the results:

T 0
r

c
D �v

�
Tr

c
� ˇ prz

�

p0
rx D prx

p0
ry D pry

p0
rz D �v

�
prz � ˇ

Tr

c

�
: (2.81)

When we perceive these four quantities as components of the vector p � then we
recognize that they transform like the components of a contravariant four-vector:

p � D �
p0; p1; p2; p3

� D
�

Tr

c
; prx; pry; prz

�

D �um
�
c; ux; uy; uz

� D m u � : (2.82)
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For the components of the transformed four-vector p �0 we have with (2.16)
and (2.81) :

p �0 D L� � p � : (2.83)

This, however, is the definition equation (2.3) of a contravariant four-vector.
Therewith now, we have explicitly derived the four-vector world-momentum, which
we had introduced already in (2.57) by analogy-arguments.

The next item concerns the transformation of forces. For the space components
we need the time derivatives of relativistic momenta:

F D d

dt
pr I F0 D d

dt0
p0
r :

Let u and u0 further on be the particle velocities in † and †0, respectively, where †0
moves relative to † with the velocity v parallel to the z-axis. According to (1.21)
the time transforms as:

t0 D �v

�
t � v

c2
z
�

:

If we exploit (2.80), this means for the time-differential:

dt0 D �v dt
�
1 � v uz

c2

�
D � 0

u

�u
dt :

From this we read off,

d

dt0
� �u

� 0
u

d

dt
; (2.84)

which immediately leads to the transformed forces:

F0
x D

d

dt0
p0
rx D

�u

� 0
u

d

dt
prx D �u

� 0
u

Fx :

Here we have taken from (2.81) p0
rx D prx. Very analogously one gets the y-

component of the force:

� 0
uF0

x D �uFx I � 0
uF0

y D �uFy : (2.85)

For the z-component we get:

F0
z D

d

dt0
p0
rz D

�u

� 0
u
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dt

�
�v

�
prz � ˇ

Tr

c

�	
:
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Then with (2.53) it follows that:

� 0
uF0

z D �v

�
�uFz � ˇ �u

F � u
c

�
: (2.86)

Finally it still remains:

�
F � u
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�0
D d

dt0
T 0
r
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D �u

� 0
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�
�v

�
Tr

c
� ˇ prz

�	
:

We read this expression as:

� 0
u

�
F � u

c

�0
D �v

�
�u

�
F � u

c

�
� ˇ �u Fz

	
: (2.87)

Let us now define

K 0 D �u
F � u

c

K1 D �u Fx

K2 D �u Fy

K3 D �u Fz : (2.88)

By the use of (2.85) to (2.87) we arrive at:

K 00 D �v

�
K 0 � ˇ K3

�

K10 D K1

K20 D K2

K30 D �v

�
K3 � ˇ K 0

�
: (2.89)

But these are again the transformation formulae,

K �0 D L� � K � ; (2.90)

of a contravariant four-vector, namely the

Minkowski force W K � � �K 0; K1; K2; K3
�

: (2.91)

With (2.38) it immediately follows,

d

d	
D �u

d

dt
.	 D proper time/ ; (2.92)



60 2 Covariant Four-Dimensional Representations

the force equation (2.43):

K � � d

d	
p � D m

d

d	
u � : (2.93)

All the relations of Sect. 2.2.2 are therewith explicitly verified by the discussion of
the elastic collision.

There is a last point of the program we have to still deal with. We still have to
prove that the integration constant d in (2.77) indeed vanishes as stated in (2.79). In
all subsequently derived relations we have to actually replace Tr by Tr � d.

Considering the collision process we define a new four-vector

�p � D ��p0; �pr
�

; (2.94)

where

�pr D
X

i

p.i/
r �

X
f

p. f /
r (2.95)

represents the difference of the sum of the relativistic initial momenta (i for initial)
and the sum of the final momenta ( f for final). �p0 is the corresponding expression
for the time components:

�p0 D
X

i

�
p0
�.i/ �X

f

�
p0
�. f /

: (2.96)

Hence�p � is a contravariant four-vector because all the p � involved are contravari-
ant four-vectors (2.95), which is the law of conservation of momentum, valid in all
inertial systems, takes a very simple form:

�pr D 0 : (2.97)

This has the immediate consequence for all inertial systems:

�p0 D 0 (2.98)

Because of (2.97), out of �p30 D �.�p3 � ˇ �p0/ we have 0 D �� ˇ �p0 and
therewith (2.98). �p � is thus the four-zero vector:

0
ŠD c �p0 D

X
i

.Tr/
.i/ �

X
f

.Tr/
. f / �

X
i

�
".0/�m c2

�.i/

C
X

f

�
".0/ �m c2

�. f /
:
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The first two summands cancel each other since the law of conservation of energy,
too, has to be valid in all inertial systems to meet the precondition. So what
remains is:

X
f

�
".0/�m c2

�. f / ŠD
X

i

�
".0/� m c2

�.i/
: (2.99)

This relation should be fulfilled for arbitrary collisions, e.g. also for those with
different particle numbers and particle types (particle transmutations), before and
after the collision. But that is possible only if generally it is assumed that

".0/ D m c2 :

This means that the constant d is really zero and the relativistic kinetic energy Tr

has indeed the form (2.54).

2.3 Covariance of Electrodynamics

In the previous section we could recognize that the deviations of the relativistic
mechanics from the ‘familiar’ Newtonian mechanics become especially drastic
when the velocities become comparable to the velocity of light. It therefore certainly
comes out as a complete surprise that the

Maxwell equations of electrodynamics remain valid without any change even
for high velocities!

This is because, they are already form-invariant under Lorentz transformations,
which will be shall explicitly demonstrated in this section by reformulating them
in terms of four-tensors. In the case of Newtonian mechanics this adaptation was
possible only by a redefining of several physical terms like momentum, energy,
and force, which solely in the limit v � c assume the non-relativistic forms
familiar to us from Vol. 1. Such a redefining is not necessary in electrodynamics.
In the four-dimensional ‘language’ the Maxwell equations are especially simple
and symmetric. In particular, they then show the close correlation between electric
and magnetic fields which is of particular importance for a deepened understanding
of electromagnetic processes. What appears in the one inertial system as magnetic
field can manifest itself in another inertial system, at least partly, as electric field
and vice versa.
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2.3.1 Continuity Equation

The experimental observation teaches us that the

electric charge q is a Lorentz invariant.

There does not exist the slightest indication that the charge of a particle is dependent
on its velocity. However, this does not at all hold for quantities like the

charge density �

or the

current density j D � v

The reason is evident and is, in the final analysis, related to the length contraction.
Let †0 be a (co-moving) inertial system in which the considered charge is at rest:

dq D �0 dV0 :

Hence, �0 is the co-moving charge density.
Let† be another inertial systemmoving relative to †0 with the velocity v parallel

to the z-axis. Since the amount of charge cannot have changed in the given volume
element, we can set:

dq D � dV :

For the volume element dV the length contraction (1.28) leads to:

dV D dx dy dz D dx0 dy0 dz0

p
1 � v2=c2 D 1

�
dV0 :

From � dV D �0 dV0 it then follows for the charge density seen from †:

� D �0 � : (2.100)

According to its meaning as rest-charge density �0 must be considered as Lorentz
invariant. The charge density � produces in † a current density j:

j D � �0 v : (2.101)

One recognizes from Eqs. (2.100) and (2.101) a contravariant four-vector, the so-
called

four-current density

j � D �c�; jx; jy; jz
� � .c�; j/ D � �0.c; v/ D �0 u � : (2.102)
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That it is indeed a contravariant four-vector follows from the fact that �0 is a four-
scalar. j � thus transforms as the world-velocity u �, about which we already know
that it is such a contravariant four-vector. Nevertheless, we prove it explicitly.

In the rest system †0 of the charge we have:

j0 D �0 v0 D 0 I j 0
0 D c �0 �! j �

0 D .c�0; 0; 0; 0/ :

The Lorentz transformation (1.16) then yields for the components of the four-current
density in †:

j 0 D c� D � j 0
0 � ˇ� j30 D c ��0 ;

j1 D jx D j0x D 0 ;

j2 D jy D j0y D 0 ;

j3 D jz D �ˇ� j 0
0 C � j30 D �� �0 v D ��v :

This is obviously the correct result when one bears in mind that v D .0; 0;�v/ is
the velocity of the charge in †.

We now consider the continuity equation (see (2.10), Vol. 3):

@�

@t
C divj D 0 :

We recognize on the left-hand side the divergence of the four-vector j � as we see by
applying (2.32):

@�j � D 1

c

@

@t
j 0 C divj D divjC @

@t
� :

The continuity equation can therefore be written in the very compact form:

@�j � D 0 : (2.103)

Both sides of the equation are four-scalars. The continuity equation is thus Lorentz
invariant.

2.3.2 Electromagnetic Potentials

We now discuss the wave equations of the electromagnetic potentials,

'.r; t/ W scalar potential I A.r; t/ W vector potential ;
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and we repeat, for this purpose, some considerations from Sect. 4.1.3 in Vol. 3. We
want to use here also the international system of units (SI) (Sect. 2.1.2, Vol. 3),
although the Gaussian system of units is actually better suited to the Special Theory
of Relativity. We know that the Maxwell equations can be grouped into two
homogeneous and two inhomogeneous differential equations:

homogeneous W divB D 0 ;

curlEC PB D 0 ;

inhomogeneous W divD D � ;

curlH � PD D j :

We restrict our considerations to the vacuum for which we have to use:

D D "0E I B D �0H

The vector potential is defined by the ansatz ((3.34), Vol. 3),

B D curlA :

The second homogeneous Maxwell equation then reads

curl
�

EC PA
�
D 0 ;

which leads to the following ansatz for the electric field E:

E D �grad' � PA ((4.21), Vol. 3) :

' and A are not uniquely determined by the above definition equations. One still
has the free choice of a function �.r; t/ provided it is chosen so that

' ! ' � P� I A! AC grad�

is guaranteed ((4.22) and (4.23), Vol. 3). Because of curlgrad� D 0 such a gauge
transformation does not change the fields E and B. One therefore can fix it under
practicality aspects.

By the introduction of the electromagnetic potentials ' and A the homogeneous
Maxwell equations are automatically fulfilled, while the two inhomogeneous
equations become now differential equations of second order for the potentials '

and A. These equations, however, assume an especially symmetric shape if one
chooses the gauge function �.r; t/ such that the

Lorenz condition

divAC 1

c2
P' D divAC 1

c

@

@t

�
1

c
'

�
D 0 (2.104)
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is fulfilled (see (4.37), Vol. 3). With c D .�0"0/
�1=2 the potentials ' and A are

solutions of the following
wave equations

� A �
�

� � 1

c2

@2

@t2

�
A D ��0 j ; (2.105)

�
�

1

c
'

�
D
�

� � 1

c2

@2

@t2

��
1

c
'

�
D �1

c

�

"0

D ��0.c �/ (2.106)

(see (4.38) and (4.39), Vol. 3). On the right-hand sides of these wave equations we
recognize the space and time components of the four-current density j �. Since the
d’Alembert operator � (2.33) is a scalar operator, Eqs. (2.105) and (2.106) make it
appear reasonable to introduce a further four-vector, the

four-potential

A � �
�

1

c
'; Ax; Ay; Az

�
�
�

1

c
'; A

�
: (2.107)

The wave equations for ' and A can therewith be combined as
four-wave equation

� A � D ��0j � ; (2.108)

which is covariant since both sides are four-tensors of the same, namely, the first
rank.

The Lorenz condition (2.104) can finally still be written as four-divergence (2.32)
of the potential A �. The relation

@�A � D 1

c

@

@t
A0 C divA

is obviously identical to the left-hand side of (2.104). The
Lorenz condition

@�A � � 0 (2.109)

is as world-scalar Lorentz invariant.

2.3.3 Field-Strength Tensors

The field strengths E and B can not be written in the relativistic electrodynamics
as four-vectors. Instead of that, we have to introduce for the fields, a four-tensor of
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second rank which incorporates likewise the fields E and B. Starting point is again
the connection between fields and potentials:

B D curlA I E D �grad' � PA :

We already introduced the four-gradient in Sect. 2.1.3:

@� D
�

1

c

@

@t
;r
�
D .@0; @1; @2; @3/ ; (2.110)

@� D
�

1

c

@

@t
;�r

�
D �@0; @1; @2; @3

�
: (2.111)

It holds obviously:

@0 D @0 I @1; 2; 3 D �@1; 2; 3 : (2.112)

This we use to reformulate at first the B-field:

Bx D @

@y
Az � @

@z
Ay D @2A3 � @3A2 D � �@2A3 � @3A2

�
:

Analogously, it follows for the two other Cartesian components:

By D �
�
@3A1 � @1A3

� I Bz D �
�
@1A2 � @2A1

�
:

The E-field can be written quite similarly :

Ex D � @

@x
' � @

@t
Ax D �c

�
@

@x

�
1

c
'

�
C 1

c

@

@t
Ax

	

D c
�
@1A0 � @0A1

�
:

Corresponding expressions are valid for Ey and Ez:

Ey D c
�
@2A0 � @0A2

� I Ez D c
�
@3A0 � @0A3

�
:

We introduce by

F �
 � @�A
 � @
A � (2.113)

a new four-tensor of second rank. As a tensor of two contravariant four-vectors it
is also contravariant and is obviously antisymmetric:

F �
 D �F 
� : (2.114)
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One can regard this tensor as four-dimensional generalization of the curl of the
vector A �:

field-strength tensor

F �
 �

0
BB@

0 � 1
c Ex � 1

c Ey � 1
c Ez

1
c Ex 0 �Bz By
1
c Ey Bz 0 �Bx
1
c Ez �By Bx 0

1
CCA : (2.115)

The electromagnetic field is described in the Minkowski space not anymore by two
fields but rather by one tensor of second rank. In the next section, we will use the
field-strength tensor for the covariant formulation of the Maxwell equations.

The covariant field-strength tensor comes out easily by use of the general
‘conversion-prescription’ (2.26) presented in Sect. 2.1.2:

F�
 D ��˛�
ˇ F ˛ˇ : (2.116)

Since the metric tensor �˛ˇ is diagonal in the Special Theory of Relativity (2.19), it
simply follows:

F0
 D �F 0
 I F
0 D �F 
0 I F�
 D F �
 I �
 2 f1; 2; 3g : (2.117)

So we have to replace in (2.115) only E by �E in order to come from F �
 to F�
 .
We read off from (2.115) an important

invariant of the electromagnetic field

F�
 F �
 D 2

�
B2 � 1

c2
E2

�
; (2.118)

which as a four-scalar remains uninfluenced by Lorentz transformations. It is
obviously never possible to transform a pure B-field into a pure E-field, or vice
versa, since the two terms in (2.118) carry different signs. Later we will once more
come back to this fact.

2.3.4 Maxwell Equations

We now want to derive with the aid of the field-strength tensor (2.115) the Maxwell
equations in explicit covariant form. We start with the inhomogeneous equations
which can be written with c D ."0�0/�.1=2/ as follows:

div

�
1

c
E
�
D �0 c� D �0j 0 ; (2.119)

curlB � 1

c

@

@t

�
1

c
E
�
D �0j : (2.120)
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On the right-hand side of these equations we identify the components of the four-
current j � (2.102). The left-hand sides should therefore also be components of a
four vector, if, as initially stated, the system of the Maxwell equations is indeed
covariant. Let us try to express the left-hand sides by the field-strength tensor:

� D 0

�0j 0 D div
�

1
c E
� D 1

c

�
@
@x Ex C @

@y Ey C @
@z Ez

�

D @1F10 C @2F20 C @3F30 D @˛F ˛0 :

� D 1

�0j1 D �0jx D @
@y Bz � @

@z By C 1
c

@
@t

�� 1
c Ex

�
D @2F21 C @3F31 C @0F 01 D @˛F ˛1 :

� D 2

�0j2 D �0jy D @
@z Bx � @

@x Bz C 1
c

@
@t

�� 1
c Ey

�
D @3F32 C @1F12 C @0F 02 D @˛F ˛2 :

� D 3

�0j3 D �0jz D @
@x By � @

@y Bx C 1
c

@
@t

�� 1
c Ez
�

D @1F13 C @2F23 C @0F 03 D @˛F ˛3 :

These relations can be summed up to a compact expression:
inhomogeneous Maxwell equations

@˛F ˛ˇ D �0j ˇ I ˇ D 0; 1; 2; 3 : (2.121)

On the left we have a contracted third-rank tensor, consequently a four-vector
like the one on the right-hand side. Covariance is therewith guaranteed. The
inhomogeneousMaxwell equations in this form are valid in all inertial systems.

We now consider the homogeneous Maxwell equations:

divB D 0 ; (2.122)

curl

�
1

c
E
�
C 1

c

@

@t
B D 0 : (2.123)
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For (2.122) we can also write with (2.112) and (2.114):

0 D divB D @

@x
Bx C @

@y
By C @

@z
Bz D @1F32 C @2F13 C @3F21

D �
@1F23 C @2F31 C @3F12

�
:

The three components of the vector-equation (2.123) can be reformulated
with (2.112) in the following manner:

0 D
�
curl

1

c
E
�

x

C 1

c

@

@t
Bx D @

@y

�
1

c
Ez

�
� @

@z

�
1

c
Ey

�
C 1

c

@

@t
Bx

D @2F30 C @3F 02 � @0F23 D � �@2F30 C @3F 02 C @0F23
�

;

0 D
�
curl

1

c
E
�

y

C 1

c

@

@t
By D @

@z

�
1

c
Ex

�
� @

@x

�
1

c
Ez

�
C 1

c

@

@t
By

D @3F10 C @1F 03 � @0F31 D � �@3F10 C @1F 03 C @0F31
�

;

0 D
�
curl

1

c
E
�

z

C 1

c

@

@t
Bz D @

@x

�
1

c
Ey

�
� @

@y

�
1

c
Ex

�
C 1

c

@

@t
Bz

D @1F20 C @2F 01 � @0F12 D � �@1F20 C @2F 01 C @0F12
�

:

These equations, too, can be brought into a compact form:
homogeneous Maxwell equations

@˛F ˇ� C @ˇF �˛ C @� F ˛ˇ D 0 ; ˛; ˇ; � arbitrary from .0; 1; 2; 3/ : (2.124)

All additive terms in this expression, which differ from one another by a cyclic
interchange of the indexes ˛; ˇ; � , are four-tensors of the same rank. If two indexes
in (2.124) are equal, then the left-hand side is identical to zero. So it follows, for
instance, for ˛ D ˇ (2.114):

@˛F ˛� C @˛F �˛ C @� F ˛˛ D @˛ .F ˛� � F ˛� / D 0 :

Hence, only the combinations .0; 1; 3/, .0; 1; 2/, .1; 2; 3/ are of interest. But these
are just the above discussed four homogeneous Maxwell equations.

Equations (2.121) and (2.124) demonstrate that the system of Maxwell equations
can be expressed by four-tensors in a very compact and symmetric form, where the
covariance with respect to Lorentz transformations becomes immediately evident.

A still more compact representation of the homogeneousMaxwell equations than
that in (2.124) is achieved by introducing the so-called dual field-strength tensor:

F
�
 D 1

2
" �
�� F�� : (2.125)
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Here we use the totally antisymmetric fourth-rank tensor

" �
�� D

8̂
<̂
ˆ̂:
C1 ; if .�; 
; �; �/ is an even permutation of .0; 1; 2; 3/ ;

�1 ; if it is an odd permutation ;

0 ; if two or more indexes are equal ;

(2.126)

The elements F�
 of the covariant field-strength tensor are related by (2.117) to
those of the contravariant tensor (2.115). At first, one reads off immediately from
the definition (2.125):

F
�
 D �F


�
(2.127)

Hence the diagonal elements are all zero. Let us calculate as an example under
consideration of (2.117):

F
12 D 1

2
"12�� F�� D 1

2

�
"1230F30 C "1203F03

�

D 1

2
.�F30 C F03/ D F30 D 1

c
Ez :

Fully analogously one finds (see Exercise 2.5.10, only the elements with � < 


need to be calculated):

F
13 D F 02 I F 01 D F23 I F

23 D F10 I F 02 D F31 I F 03 D F12 :

According to that one obtains the components of the dual field-strength tensor F
�


from those of the covariant tensor F�
 by the replacement:

B  ! �1

c
E : (2.128)

This yields with (2.115):

F
�
 D

0
BB@

0 �Bx �By �Bz

Bx 0 1
c Ez � 1

c Ey

By � 1
c Ez 0 1

c Ex

Bz
1
c Ey � 1

c Ex 0

1
CCA : (2.129)

It is now easy to check the following relations:

@˛F ˛0 D @0F 00 C @1F
10 C @2F

20 C @3F
30

D @1F32 C @2F13 C @3F21 D @1F23 C @2F31 C @3F12 ;

@˛F ˛1 D @0F23 C @2F 03 C @3F20 D @0F23 C @2F30 C @3F 02 ;
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@˛F ˛2 D @0F31 C @1F 03 C @3F10 ;

@˛F ˛3 D @0F12 C @1F20 C @2F 01 :

We thus can also write in lieu of (2.124):
homogeneous Maxwell equations

@˛F ˛ˇ D 0 I ˇ D 0; 1; 2; 3 : (2.130)

Eventually, one still recognizes with (2.115) and (2.129) a further
invariant of the electromagnetic field

F˛ˇF ˛ˇ D �4

c
E � B : (2.131)

A four-tensor of zeroth rank appears on the left side, i.e., a world-scalar. The scalar
product of the electric and the magnetic field E � B therefore does not change under
a Lorentz transformation being therewith the same in all inertial systems.

2.3.5 Transformation of the Electromagnetic Fields

With the relations derived in the last section it is now easy to calculate how electric
and magnetic fields behave in detail under a Lorentz transformation.

We got to know in Sect. 2.1 the transformation behavior of a contravariant
second-rank tensor. Equations (2.8) and (2.9),

.F �
/0 D @x0�

@x˛

@x0


@xˇ
F ˛ˇ D L�˛L
ˇF ˛ˇ ;

lead with (1.16) to the transformed field-strength tensor. Because of F ˛ˇ D �F ˇ˛

it also follows immediately

.F �
/
0 D � .F 
�/

0
:

This means in particular that the diagonal elements of the transformed tensor vanish.
There are therefore only six elements to be explicitly calculated:

�
F 01

�0 D L11

�
L00F 01 C L03F31
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�
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c
Ex C ˇBy
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ŠD �1
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E0
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�
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�0 D L22

�
L00F 02 C L03F32

� D �

�
�1

c
Ey � ˇBx

�
ŠD �1

c
E0

y ;

�
F 03

�0 D L00

�
L30F 00 C L33F 03

�C L03

�
L30F30 C L33F33

�
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D �2
�
1 � ˇ2

� ��1

c
Ez

�
D �1

c
Ez

ŠD �1

c
E0

z ;

�
F12

�0 D L11L22F12 D �Bz
ŠD �B0

z ;

�
F13

�0 D L11

�
L30F10 C L33F13

� D �

�
By � ˇ

c
Ex

�
ŠD B0

y ;

�
F23

�0 D L22

�
L30F20 C L33F23

� D �

�
�ˇ

c
Ey � Bx

�
ŠD �B0

x :

The components of the magnetic field transform therewith according to the follow-
ing formulae:

B0
x D �

�
Bx C ˇ

c
Ey

�
; (2.132)

B0
y D �

�
By � ˇ

c
Ex

�
; (2.133)

B0
z D Bz : (2.134)

For the components of the electric field we have:

E0
x D �

�
Ex � ˇ c By

�
; (2.135)

E0
y D �

�
Ey C ˇ c Bx

�
; (2.136)

E0
z D Ez : (2.137)

These formulae demonstrate the close entanglement of electric and magnetic fields.
That what appears in one system as pure E- or B-field is in an other inertial system
a mixture of both. Under all Lorentz transformations, however, the

invariants of the electromagnetic field

�
B2 � 1

c2
E2

�
and E � B

remain unchanged. From that it follows, as we have already stated earlier, that it is
impossible to transform a pure B-field into a pure E-field and vice versa.

For certain purposes it appears reasonable to resolve the fields into components
parallel and perpendicular to the relative velocity v of the two inertial systems †

and †0. The parallel-component of the electric field is of course identical to the
z-component:

E0
k D E0

zez D Ezez D Ek : (2.138)
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The orthogonal component is determined slightly more complicatedly:

E0
? D E0

xex C E0
yey D �

�
Exex C Eyey C ˇ c

�
Bxey � Byex

�
:

With

ˇ D v
c
�
�
0; 0;

v

c

�
(2.139)

the last summand can be written as a vector product:

E0? D � ŒE? C c.ˇ 	 B/� : (2.140)

Analogously one finds for the magnetic induction:

B0
k D Bk I B0? D �

�
B? � 1

c
.ˇ 	 E/

	
: (2.141)

These results for the electromagnetic fields can be combined as follows:

E0 D � ŒEC c.ˇ 	 B/� � �2

� C 1
ˇ .ˇ � E/ ; (2.142)

B0 D �

�
B � 1

c
.ˇ 	 E/

�
� �2

� C 1
ˇ .ˇ � B/ : (2.143)

In this form the transformation formulae are valid for arbitrary velocities v. v need
not necessarily be directed parallel to the z-axis. Let us check it:

E0
k �

ˇ

ˇ

�
E0 � ˇ

ˇ

�
D ˇ

ˇ2

�
� E � ˇ � �2

� C 1
ˇ2.ˇ � E/

�

D Ek
�

� � �2

� C 1
ˇ2

�
D Ek

�2 C � � �2ˇ2

� C 1
D Ek ;

E0? D E0 � ˇ

ˇ

�
E0 � ˇ

ˇ

�
D E0 � Ek

D � ŒE? C c.ˇ 	 B/�C Ek
�

� � �2

� C 1
ˇ2 � 1

�
D � ŒE? C c.ˇ 	 B/� :

These are for the E-field the correct expressions (2.138) and (2.140). The procedure
for the B-field succeeds in the same manner.

We discuss as an example of application use the

fields of a moving point charge q.
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Fig. 2.2 For the calculation
of the fields of a moving point
charge in two inertial systems
moving relative to one
another

We assume that the charge q is located at the origin of †0. Let †0 be the rest system
of the charge. On the other hand, let † be the rest system of an observer P, where
we can assume, without loss of generality, that his position lies on the y-axis in †.
We assume that †0 moves relative to † with the constant velocity v in z-direction,
where at t D t0 D 0 both the systems of coordinates coincide (Fig. 2.2). The position
of P in † is given by

rP D .0; yP; 0/

and in †0 by

r0 D �0; yP;�v t0
�

: (2.144)

The distance of the observer from the point charge

r0 D
q

y2
P C v2t02

is, because of

t0 D �
�

t � v

c2
zP

�
D � t ;
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in †-coordinates:

r0 D
q

y2
P C v2�2t2 : (2.145)

Which fields are now seen by the observer P when the point charge q moves with
v D const along the z-axis?

The fields in †0 are those of a charge at rest, therefore known from non-
relativistic electrodynamics (see Vol. 3):

B0 � 0 ; (2.146)

E0.t0/ D q

4�"0

r0

r03 D
q

4�"0r03
�
0; yP;�v t0

�
: (2.147)

The E-field is time-dependent since the position of the observer P in †0 changes in
the course of time, i.e., the field is measured for different times t0 at different places
r0 in †0 (Fig. 2.3).

For the calculation of the E-field in † we use the transformation formulae (2.135)
to (2.137), where it is to bear in mind that † moves relative to †0 with the velocity
�v:

Ex D �
�
E0

x C ˇ c B0
y

� D 0 ; (2.148)

Ey D �
�
E0

y � ˇ c B0
x

� D � E0
y D

q

4�"0

� yP�
y2

P C �2v2t2
�3=2

; (2.149)

Ez D E0
z D

q

4�"0

�� v t�
y2

P C �2v2t2
�3=2

: (2.150)

The transverse component Ey is obviously remarkably different from zero only in
the time interval

�t1=2 � t � Ct1=2 ;

Fig. 2.3 Time-dependence of
the transverse component Ey

of the electric field of a point
charge, which moves relative
to the observer in z-direction,
seen from the rest system of
the observer
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where the half width t1=2 is defined by

Ey
�
t D t1=2

�
Ey.t D 0/

ŠD 1

2
:

It is thus fixed by

1

2

ŠD y3
P�

y2
P C �2v2t21=2

�3=2

as

t1=2 D yP

� v

�
22=3 � 1

�1=2
:

Themaximumof the Ey-peak appears at t D 0, hence at the moment of the minimum
spatial distance between charge q and P. In the relativistic region v . c the peak
becomes very sharp because t1=2 is then very small.
The longitudinal component Ez of the electric field (2.150) changes its sign
(Fig. 2.4) at t D 0 and has extrema at

˙t0 D yP

� v

1p
2

;

This is easily proved by putting the first time-derivative equal to zero. The extreme
values,

Ez .t D ˙t0/ D 
 q

6
p

3�"0y2
P

;

are thereby v-independent.

Fig. 2.4 Time- dependence of the longitudinal component Ez of the electric field of a point charge,
which moves relative to the observer in z-direction, seen from the rest system of the observer
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How does the spatial distribution of the electric field E relative to the point charge
look like in the observer-system † at a fixed time t? Figure 2.2 illustrates

yP D r sin ' I v t D r cos' ;

where r is the distance between charge and observer in †. It follows with

�
y2

P C �2v2t2
�3=2 D r3

�
sin2 ' C �2 cos2 '

�3=2

D r3�3
�
1 � ˇ2 sin2 '

�3=2

for the field distribution in † around the point charge q:

E D q r

4�"0r3�2
�
1 � ˇ2 sin2 '

�3=2
: (2.151)

r is the space vector from the point charge to the observer. The E-field is radial as for
a resting charge, but for ˇ ¤ 0 it is no longer isotropic. In the direction of motion
(' D 0 or �) we have:

E.ˇ/

E.0/
D 1

�2
;

and, in contrast, perpendicular to the direction of motion .' D �=2/:

E.ˇ/

E.0/
D � :

We still have to discuss the B-field of the moving point charge. With the transfor-
mation formulae (2.132) to (2.134) we find for the Cartesian components in †:

Bx D �

�
B0

x �
ˇ

c
E0

y

�
D ��

ˇ

c
E0

y D �
ˇ

c
Ey ; (2.152)

By D �

�
B0

y C
ˇ

c
E0

x

�
D 0 ; (2.153)

Bz D B0
z D 0 : (2.154)

For this evaluation we have exploited (2.146) and (2.147). We see that the moving
point charge generates a magnetic induction in x-direction. Its time-dependence
corresponds to that of Ey, which we have discussed in detail. A bit more generally
one finds for the magnetic induction according to (2.143) with B0 � 0:

B D �

c

�
ˇ 	 E0� D �0

4�

q �

r03
�
v 	 r0� : (2.155)
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For � D 1 this is the Biot and Savart law (see (3.23), Vol. 3) for the magnetic field
produced by a moving charge. In our special case .v D v ez/ we have

v 	 r0 D �v yP ex : (2.156)

2.3.6 Lorentz Force

Let us finally add to our four-dimensional formalism still the Lorentz force ((4.40),
Vol. 3)

F D q.EC v 	 B/

At first we interpret F as the time derivative of the space components (pr, (2.58)) of
the four-momentum (2.57):

p � D
�

Tr

c
; pr

�
D m u � D m� .c; v/ :

However, .d=dt/pr are by themselves, not yet, the space components of a four-vector
since the time t does not transform accordingly. We therefore introduce again the
proper time 	 .t D � 	/ and try to generalize the Lorentz force in such a manner
that, as in mechanics, a covariant force law comes out:

K � � d

d	
p � � m

d

d	
u � (2.157)

On the left-hand side there should of course appear the
Minkowski force (2.51)

K � � �

�
F � v

c
; Fx; Fy; Fz

�
� �K0; K

�
(2.158)

which we discussed in detail in Sect. 2.2.2 for the case of classical mechanics.
With (2.92) at first it follows for the space components

K � d

d	
pr D �F D q.� EC � v 	 B/ :

On the right-hand side we introduce the contravariant four-velocity u � (2.39):

u � � � .c; v/ � .u0; u/ :

Then we have:

K D q

�
u0

�
1

c
E
�
C u 	 B

	
:
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We express the right-hand side by the contravariant field-strength tensor (2.115):

Kx D q

�
u0

�
1

c
Ex

�
C uyBz � uzBy

	
D q

�
u0F10 C u2F21 C u3F31

� D K1 ;

Ky D q

�
u0

�
1

c
Ey

�
C uzBx � uxBz

	
D q

�
u0F20 C u3F32 C u1F12

� D K2 ;

Kz D q

�
u0

�
1

c
Ez

�
C uxBy � uyBx

	
D q

�
u0F30 C u1F13 C u2F23

� D K3 :

According to (2.114), if we replace in these expressions the terms F ˛ˇ with ˇ ¤ 0

by �F ˇ˛ , and the contravariant by the covariant four-velocity .u0 ! u0Iu! �u/,
then because of F �� D 0 it obviously holds:

K1 D Kx D q F1˛u˛ ; (2.159)

K2 D Ky D q F2˛u˛ ; (2.160)

K3 D Kz D q F3˛u˛ : (2.161)

The right-hand sides transform certainly like the space components of a con-
travariant four-vector. It therefore suggests itself to complement the system by a
corresponding time component:

K 0 D q F 0˛u˛

D q

��
�1

c
Ex

�
.�ux/C

�
�1

c
Ey

� ��uy
�C

�
�1

c
Ez

�
.�uz/

	

D q

�
1

c
E
�

� .� v/ :

This expression is easy to interpret because

q v � E D v � F :

It holds namely with (2.53):

K 0 D �

�
F � v

c

�
D �

d

dt

�
1

c
Tr

�
D d

d	
p0 : (2.162)

This result fits (2.157) and (2.158). We have therewith found the

covariant representation of the Lorentz force :

K � � d

d	
p � D q F �˛u˛ D �

�
1

c
F � v; F

�
: (2.163)
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K � is the Minkowski force introduced in Sect. 2.2.2 for the covariant representation
of classical mechanics. (2.163) documents once more the conclusiveness of the
considerations in Sect. 2.2.2.

Let us investigate at the end once more, similar to that in Sect. 2.2.3, the explicit
transformation behavior of the Lorentz force F. As usual, we consider for this
purpose, two inertial systems † and †0, out of which †0 moves relative to † with
the velocity v parallel to the z-axis. A particle of the charge q with the velocity u in
† then experiences the Lorentz force:

F D q.EC u 	 B/ in † : (2.164)

Due to which force F0 does it move as seen by an observer in †0? We determine
F0 from the transformation behavior of the space components of the contravariant
Minkowski force (2.158):

K10 D K1 I K20 D K2 ;

K30 D �v

��ˇ K 0 C K3
� I ˇ D v

c
I �v D

�
1 � ˇ2

��1=2
:

If u0 means the particle velocity in †0 then it follows from these equations:

�u0F0
x D �uFx I �u0F0

y D �uFy I

�u0F0
z D �v

�
�uFz � ˇ �u

F � u
c

�
:

With the same considerations, which led in Sect. 2.2.3 to Eq. (2.80), one also finds
here:

�u0 D �u�v

�
1 � v uz

c2

�
:

Therewith, the components of the Lorentz force in †0 read:

F0
x D

1

�v

Fx

1 � v uz

c2

; (2.165)

F0
y D

1

�v

Fy

1 � v uz

c2

; (2.166)

F0
z D

Fz � v
c2 .F � u/

1 � v uz

c2

: (2.167)

In Sect. 2.2.3 we had found identical formulae for the mechanical forces, which,
however, because of (2.163), does not really surprise.
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2.3.7 Formulae of Relativistic Electrodynamics

In the last section we have completed the covariant representation of the electrody-
namics. For a better overview let us gather once more the most important formulae:

electric charge:

q W Lorentz invariant

four-current density:

j � D .c�; j/ D � �0.c; v/ D �0u �

�0 W rest-charge density ;

u � � �.c; v/ W world-velocity :

continuity equation :

@�j � D 0 I @� �
�

1

c

@

@t
;r
�

:

four-potential:

A � �
�

1

c
'; A

�
:

four-wave equation:

�A � D ��0j � I � D � � 1

c2

@2

@t2
:

Lorenz gauge:

@�A � D 0 :

contravariant field-strength tensor:

F �
 � @�A
 � @
A � I @� �
�

1

c

@

@t
;�r

�
;

F �
 �

0
BB@

0 � 1
c Ex � 1

c Ey � 1
c Ez

1
c Ex 0 �Bz By
1
c Ey Bz 0 �Bx
1
c Ez �By Bx 0

1
CCA :
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covariant field-strength tensor:

F�
 D ��˛�
ˇF ˛ˇ :

dual field-strength tensor:

F
�
 D 1

2
" �
��F��

from F�
 by substitution: B  ! �.1=c/E.
Maxwell equations:
homogeneous:

@˛F ˛ˇ D 0 I ˇ D 0; 1; 2; 3

or

@˛F ˇ� C @ˇF �˛ C @� F ˛ˇ D 0 ;

˛; ˇ; � arbitrary from .0; 1; 2; 3/.
inhomogeneous:

@˛F ˛ˇ D �0j ˇ I ˇ D 0; 1; 2; 3 :

transformation of the fields:

ˇ D v
c
W

E0 D � ŒEC c .ˇ 	 B/� � �2

� C 1
ˇ.ˇ � E/ ;

B0 D �

�
B � 1

c
.ˇ 	 E/

	
� �2

� C 1
ˇ .ˇ � B/ :

especially for v D v ez:

B0
x D �

�
Bx C ˇ

c
Ey

�
E0

x D �
�
Ex � ˇ c By

�
;

B0
y D �

�
By � ˇ

c
Ex

�
E0

y D �
�
Ey C ˇ c Bx

�
;

B0
z D Bz E0

z D Ez :

invariants of the electromagnetic field:

�
B2 � 1

c2
E2

�
and E � B :



2.4 Covariant Lagrange Formulation 83

Minkowski force:

K � � �

�
F � v

c
; Fx; Fy; Fz

�
;

F D q.EC v 	 B/ W Lorentz force ;

v W particle velocity :

covariant force equation:

K � D m
d

d	
u � D q F �˛u˛ :

2.4 Covariant Lagrange Formulation

After having put into effect in Sect. 2.2 the relativistic generalization of the
Newtonian mechanics, we now discuss, at least in the form of a set of statements,
the relativistic Lagrangian mechanics (see Sect. 1, Vol. 2). In particular, the aim is
to find a Lagrange function from which the equations of motion can be derived in
the correct covariant form.

The most direct approach can be found by the use of the Hamilton principle
(Sect. 1.3, Vol. 2):

The action functional ((1.120), Vol. 2)

S D
t2Z

t1

L .q.t/; Pq.t/; t/ dt

over theLagrange function L.q; Pq; t/ takes among the competitive set M of admitted
paths ((1.118), Vol. 2)

M D fq.t/ W q .t1/ D qi; q .t2/ D qeg

an extreme value for the real path:

ıS D 0 :

The paths, which belong to M, have all the same initial and end configurations
qi and qe, which are adopted in each case at certain given times t1 and t2, while
the various paths differ from one another by virtual displacements. One of the main
consequences of this Hamilton principle are the Lagrange equations of motion:

d

dt

@L

@Pqj
� @L

@qj
D 0 I j D 1; : : : ; s :
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The equivalence principle (Sect. 1.3) can now be interpreted such that the action
functional S, out of which the fundamental equations of motion arise, has to be
Lorentz invariant. Furthermore, the Lagrange function L should, in particular, be a
four-scalar and should depend on the contravariant four-vectors x � and u � as well
as the four-scalar 	 , instead of q, Pq and t. We therefore try to formulate with the
substitution

L �! L .x �; u �; 	/ (2.168)

a
covariant Hamilton principle

ıS D ı

	2Z

	1

d	 L.x �; u �; 	/
ŠD 0 ; (2.169)

out of which the covariant Lagrange equations arise:

d

d	

@L

@u �
� @L

@x �
D 0 ; (2.170)

However, the decisive question now is how to find the correct relativistic Lagrange
function L. As a rule one has to apply analogy-considerations to non-relativistic
mechanics. In particular, the familiar relations should be reproduced for v � c. The
main problem lies in the fact that because L D T � V , statements must be available
about the potential V and therewith about forces in covariant four-representation.
Electromagnetic forces are, as we have seen in the last section, rather unproblematic,
while, for instance, hardly any noteworthy theory exists about nuclear forces. Let
us be content ourselves here with two important examples, which refer, as also
from (2.168) to (2.170), to a single particle.

(1) Force-free particle
We look for a Lagrange function L0 from which we get the equation of motion:

m
d

d	
u � D 0 (2.171)

Non-relativistically one would investigate

S D
t2Z

t1

L0 .x.t/; v.t/; t/ dt ;

where for the particle-momentum it then must hold

pi D @L0

@vi
I i D x; y; z :
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If we understand in this relation by pi directly the relativistically correct expression,

@L0

@vi
D pri D m vip

1 � v2=c2
;

then it follows by integration:

L0 D �m c2
p

1� v2=c2 : (2.172)

This is the relativistically correct form. But one has to bear in mind that L0 is
no longer identical to the kinetic energy, thus differing from Tr in (2.54). For the
corresponding Hamilton function, however, it holds ((2.8), Vol. 2):

H0 D
X

i

privi � L0 D m v2q
1� v2

c2

C m c2
p

1 � v2=c2 D � m c2

H) H0 D m c2p
1 � v2=c2

D Tr : (2.173)

We still substitute, eventually, in the action functional S the time t by the proper time
	 :

S D
	2Z

	1

d	 � L0 :

The comparison with (2.169) yields:

L0 D � L0 D �m c2 : (2.174)

We know from (2.41),

c2 D u � u� ;

so that the correct functional dependence of the Lagrange function L0 on u � could
be given by

L0 D L0 .u �/ D �mu �u� ; (2.175)

or somewhat more generally:

L0 D �mc
�
u�u�

� 1
2 .2�/

(2.176)
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We determine  by the requirement for ‘correct’ equations of motion. Since u� is
contravariant,

u0� D @x0�

@x˛
u˛ D L�˛u˛ ;

the velocity-gradient

@

@u0� D
@x˛

@x0�
@

@u˛
D �L�1

�
˛�

@

@u˛
(2.177)

transforms like a covariant four-vector.We define the covariant canonical momen-
tum

p� D � @L

@u�
D . p0;�p/ (2.178)

with a minus sign in order to guarantee that the space components match the non-
relativistic definition for v � c. We then have for the contravariant canonical
momentum with (2.25), (2.24) and (2.19):

p� D ��˛p˛ D . p0; p/ (2.179)

Finally it should be valid for the free particle discussed here:

p.0/
� D �

@L0

@u�

ŠD mu� ” p�

.0/ D mu� (2.180)

This means with respect to the ansatz (2.176):

p.0/
� D �

@

@u�

�
�mc

�
uˇuˇ

� 1
2 .2�/

�

D mc @

@u�

�
�ˇ� uˇu�

� 1
2 .2�/

D .2 � /mc��� u�
�
�ˇ� uˇu�

�� 1
2 

D .2 � /mcu�

�
uˇuˇ

�� 1
2 

D .2 � /mu�

The comparison with (2.180) leads to  D 1. That gives us the required functional
dependency of the Lagrange function L0 on the four-velocity u�:

L0 D �mc
�
u�u�

� 1
2 (2.181)
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The covariant Hamilton principle was the starting point for our considerationswhich
led to the equations of motion (2.170). That means here for the force-free particle:

@L0

@x�
D 0 �! d

d	
p.0/

� D m
d

d	
u� D � d

d	

@L0

@u�
D 0 (2.182)

p�

.0/ D m
d

d	
u� D 0 (2.183)

The ansatz (2.181) for L0 appears to be correct.
(2) Charged particle in the electromagnetic field
We seek by this example, which was investigated elaborately in Sect. 1.2.3, Vol. 2

under the keyword ‘generalized potentials’, the covariant Lagrange function L, from
which the Lorentz-force equation,

F D q.EC v 	 B/ ;

can be derived. Non-relativistically we have (see (1.79), Vol. 2):

L.x; v; t/ D m

2
v2 C q.v � A/� q ' : (2.184)

'.x; t/ is the scalar potential and A.x; t/ the vector potential. The kinetic part should
be identical to L0 from example (1), while, supposedly, the two electromagnetic
parts behave already relativistically correctly. With (2.172) for L0 we use in the
action functional

L D L0 C q.v � A/ � q '

and replace, as in example (1), the time t by the proper time 	 . The comparison
with (2.169) then leads to the following ansatz:

L D � L D � L0 C q.� v � A/ � q � '

D L0 C q

�
� v � A � .�c/

�
1

c
'

�	
:

With (2.29), (2.40) and (2.107) we recognize on the right-hand side the scalar
product of four-velocity u � and four-potential A �:

L .x �; u �; 	/ D L0 .u �/ � q
�
u �A�

�
: (2.185)

Let us test whether the known equation of motion results from this more or less
guessed ansatz for L. For this purpose we insert L into the covariant Lagrange
equation (2.170):

d

d	

@L

@u �

.2:180/D �m
d

d	
u� � q

d

d	
A�

ŠD @L

@x �
D �q

@

@x �
.u ˛A˛/ :
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Hence it should hold:

m
d

d	
u� D q

�
@� .u ˛A˛/� d

d	
A�

	
ŠD K� : (2.186)

If our ansatz (2.185) indeed proves to be correct then we have found with (2.186), in
a way as a by-product, a novel representation for the Minkowski force on a charged
particle in the electromagnetic field.

We check at first the space components, for which we assume that they lead to
the familiar Lorentz force. As usual we want to discuss the contravariant version
of the four-vector (2.186)

K � D q

�
@� .u ˛A˛/� d

d	
A �

	
: (2.187)

With (2.31) and (2.38) we have then

Ki D q

�
� @

@xi
.�� v � AC � '/� �

d

dt
Ai

	
; i 2 .x; y; z/ :

According to (2.158) it should thus follow for the Cartesian components of the
Lorentz force:

Fi D 1

�
Ki D q

�
@

@xi
.v � A/� @'

@xi
� d

dt
Ai

	

Using

d

dt
Ai D v � rAi C @Ai

@t
;

one can perform the following rearranging:

.v 	 curlA/x D vy.curlA/z � vz.curlA/y

D vy

�
@

@x
Ay � @

@y
Ax

�
� vz

�
@

@z
Ax � @

@x
Az

�

D @

@x
.v � A/� vx

@

@x
Ax � vy

@

@y
Ax � vz

@

@z
Ax

D @

@x
.v � A/� v � r Ax

D @

@x
.v � A/� d

dt
Ax C @

@t
Ax :
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Analogously we calculate the other two components:

@

@xi
.v � A/� d

dt
Ai D .v 	 curlA/i � @

@t
Ai :

This yields for the force components Fi:

Fi D q

�
�@'

@xi
� @Ai

@t
C .v 	 curlA/i

	
:

The first two summands just represent the i-th component of the electric field E
((4.21), Vol. 3), so that the space components of the four-force (2.187) lead indeed
to the correct Lorentz force:

F D q
�
�r' � PAC v 	 curlA

�
D q.EC v 	 B/ (2.188)

It still remains to check the time component:

K 0 D q

�
1

c

@

@t
.�� A � vC � '/ � �

d

dt

�
1

c
'

�	
:

We insert

d

dt
' D r' � vC @

@t
'

and obtain:

K 0 D 1

c
q �

�
�v � @A

@t
� r' � v

�
D 1

c
q �.E � v/ :

With (2.188) this can be written as

K 0 D �
F � v

c
: (2.189)

We have therefore deduced from our ansatz (2.185) for L, the according to (2.157)
and (2.158) correct equation of motion:

K � D m
d

d	
u � D �

�
F � v

c
; Fx; Fy; Fz

�
: (2.190)

Our ansatz is therewith justified. Hence, we can conclude further on:
canonical momentum

p� D � @L

@u �
D m u� C q A� : (2.191)
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This is the covariant version; the contravariant vector arises simply by transposing
the indexes:

p � D m u � C q A � : (2.192)

The space components .i 2 .x; y; z//,

pi D m� vi C q Ai ; (2.193)

contain, besides the relativistic mechanical momentum p.i/
r D m � vi, still an

additional term q Ai, which, however, does not represent a relativistic effect, but
appears already in the corresponding non-relativistic expression ((1.80), Vol. 2).
One has therefore to distinguish here also canonical and mechanical momenta. We
consider finally the time component of the canonical momentum:

p0 D m�cC q
1

c
' D 1

c

�
m�c2 C q '

�
:

The first summand on the right-hand side is just the relativistic kinetic energy Tr,
which we introduced in (2.54). The bracket therefore represents the total energy of
the particle:

E D Tr C q ' D m�c2 C q ' : (2.194)

For the canonical momentum it therewith holds :

p � D
�

1

c
E; m� vC qA

�
(2.195)

�
�

1

c
E; p

�
: (2.196)

From this one has to distinguish the mechanical momentum,

p �
m D

�
Tr

c
; m � v

�
D
�

Tr

c
; pr

�
D
�

1

c
.E � q '/; p � q A

	
; (2.197)

as we have introduced it in (2.57). At the end we have to exploit (2.62),

p �
mpm� D m2c2 ;

i.e.,

m2c2 D �.p � q A/2 C 1

c2
.E � q '/2 ;
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in order to formulate as follows the

relativistic energy of a charged particle in the electromagnetic field:

E D
p

.p � q A/2 c2 C m2c4 C q ' : (2.198)

This expression is to be compared with (2.63).

2.5 Exercises

Exercise 2.5.1 Show that the metric tensor of the Special Theory of Relativ-
ity (2.19) is a covariant tensor of second rank!

Exercise 2.5.2

1. Let a� be an arbitrary contravariant four-vector and b� any four-component
vector. Thereby a�b� is found to be always a Lorentz invariant. Show that then
b� must be a covariant four-vector!

2. Let T�
 be any tensor of second rank. a� and c
 may be arbitrary contravariant
four-vectors. The expression T�
a�c
 may thereby always represent a Lorentz
invariant. Prove that then T�
 must be a covariant second-rank tensor.

Exercise 2.5.3 Introduce by

b � D d

d	
u � ; u � W four-velocity ; 	 W proper time

the four-acceleration.

1. Show that the acceleration is in the Minkowski space always orthogonal to the
velocity.

2. Express the components of b � explicitly by those of the system-velocity v D
.vx; vy; vz/!

Exercise 2.5.4 In order to guarantee that the astronaut in his rocket feels, during
his flight through the universe, always quite ‘as at home’, it is arranged for that
the acceleration of the rocket in the system †0, in which it is momentarily at rest,
is constant and equal to the gravitational acceleration g. The initial velocity of the
rocket at the time t D 0 shall be v D 0. Discuss in the following the flight in the
‘earth-fixed’ system †, when the acceleration takes place in z-direction.

1. What is the velocity of the rocket v.t/ in the earth-system † for t > 0?
2. Estimate by a non-relativistic calculation after what time the velocity of the

rocket would exceed the velocity of light!
3. Calculate the time-dependent position of the rocket in the earth-system †!
4. How does the energy of the rocket change as a function of time?
5. Find an explicit connection between the proper time 	 (‘age’) of the astronaut

and the time t which has passed on earth!
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Exercise 2.5.5 Consider a rocket, on which any external forces do not act
(gravitation-free space), and which is pushed by its mass expulsion. At the start
the rocket has the mass M0 and the velocity v0 D 0, and to a later point in time the
mass is M and the velocity is v relative to the earth-system (lab system). The mass
dm is expelled from the rocket with the velocity v� backwards. Calculate

1. non-relativistically,
2. relativistically

the velocity v as function of the momentary mass M of the rocket!

Exercise 2.5.6 A particle moves in an inertial system † with the velocity

u D u.t/ ez

along the z-axis. Show that its proper time,

�	 D
Z 	2

	1

d	 D
Z t2

t1

1

�u.t/
dt �u.t/ D

�
1 � u2.t/

c2

�� 1
2

;

is a relativistic invariant.

Exercise 2.5.7 The inertial system b† moves relative to the inertial system † with
the velocity v in arbitrary direction.

1. In b† the magnetic induction vanishes: bB D 0. Which connection exists then
between E, B and v in †? What can be said about E � B and c2 B2 � E2?

2. Answer the same questions for the case that in b† the electric field vanishes:bE D 0!

Exercise 2.5.8 A particle with the charge q moves in an inertial system † with the
velocity

u D .a; a; a/

in a homogeneous magnetic field B D .B; 0; 0/. Let †0 be an inertial system which
moves relative to † with the velocity v D v ez D const. Which forces are acting on
the particle in † and †0, respectively?

Exercise 2.5.9 Show by use of the transformation formulae for the electromagnetic
field that

�
BC i

c
E
�2

is a Lorentz invariant.
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Exercise 2.5.10 Show by explicit calculation that the components of the dual field-
strength tensor F

�

follow from those of the covariant tensor F�
 by the substitution

B  ! �1

c
E :

Exercise 2.5.11 The inertial system b† moves relative to the inertial system † with
the velocity v D vez D const. At the time t D 0 the two systems coincide. The
point charge q is located at the origin of b†.

1. Determine the four-potentials OA� and A� in b† and †, respectively!
2. Calculate with A� the electromagnetic fields E and B of the point charge in †.

Which connection exists between E, B and v? Compare the result for (E; B) with
the formulae (2.142) and (2.143) which were derived from the transformation
behavior of the field-strength tensor!

3. Does the scalar potential ' fulfill the wave equation

� ' D � �

"0

in †?

Exercise 2.5.12 Let †; †0 be two inertial systems. The electromagnetic field in †

is (E; B) and in †0 (E0; B0). The field E has the same direction in the whole space .
†0 moves relative to † with the velocity v0 parallel to E, i.e., v0 D ˛E. A particle
with the charge q lies at the origin of coordinates in †. Use the Lorentz force on the
particle in order to show that the component of E0 in direction of E is equal to E.

Exercise 2.5.13 Let † and †0 be two inertial systems, where †0 moves relative to
† with the constant velocity v D vez. In † a particle with charge q and velocity
u D .a; b; d/ propagates in the electromagnetic field:

B D .0; B; 0/ E D 1p
2

.E; E; 0/ :

Which forces act on the particle in † and †0, respectively?

Exercise 2.5.14

1. A magnetic dipole is oriented parallel to the z-axis (magnetic moment m D
m ez; m > 0). What are the Cartesian components of the B-field?

2. Calculate now the E- and B-field of a magnetic dipole which moves uniformly
in straight-line in z-direction and whose moment is oriented parallel to the z-
direction. The dipole at the time t D 0 is at the origin of †.

3. Rewrite the fields of the moving magnetic dipole by cylindrical coordinates!
4. Which shape do the electric field lines have in the xy-plane?How does the electric

field change in course of time?
5. The E-lines do not start or end at electric charges. Under which conditions can

such electric fields occur?
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Exercise 2.5.15 Let † and †0 be two inertial systems moving relative to one
another with the velocity v D const. Give qualitative argumentswhy in † an electric
field appears although in †0 only a B0-field exists. Try to reason in the same manner
why in † a magnetic field occurs although in †0 only a pure electric field is present.

Exercise 2.5.16 A particle of mass m and the charge q moves in a homogeneous
magnetic field

B D .0; 0; B/ :

1. Show that its relativistic energy is constant in time.
2. Calculate the time-dependence of the relativistic momentum with the initial

condition v0 D .v0; 0; 0/.
3. Calculate the trajectory r.t/ of the particle with r.t D 0/ D .0; y0; 0/ where

y0 D � m v0

q B .

Exercise 2.5.17 Let a charged particle (charge q, mass m) be moving in a homoge-
neous electric field

E D .E; 0; 0/

with the initial conditions

r.t D 0/ D .0; 0; z0/ I v.t D 0/ D .0; v0; 0/ :

1. Calculate the time-dependence of the relativistic kinetic energy Tr D Tr.t/.
2. Determine the velocity of the particle v D v.t/.
3. How does the path r.t/ of the particle look like?

Exercise 2.5.18 The ‘rest mass’ m.0/ of an electron, expressed in MeV, amounts
to 0,511MeV. Let the electron be accelerated by a voltage of 200 kV.

1. Calculate the ‘mass-increase’ (2.59) m.v/=m.0/: (Note the remarks in Sect. 2.2.2
on the velocity-dependence of the mass).

2. Express the velocity v in units of c.
3. Calculate the percentage error that appears in the calculation of v, if one uses for

the kinetic energy the non-relativistic expression T D 1
2
m.0/v2.

Exercise 2.5.19 Consider the elastic collision of two particles with the same mass
m in the inertial system † in which one of the two particles is at rest before the
collision. The other particle shall have, before the collision, the energy Tr and the
momentum pr. After the collision the two particles possess the energy Tr1 and Tr2,
respectively, and the momentum pr1 and pr2, respectively.
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Fig. 2.5 Relativistic collision
of two particles with equal
masses m, out of which one is
at rest before the collision

1. Calculate the angle # between the momenta pr1 and pr2 after the collision as
functions of Tr and Tr1!

2. Discuss the limiting cases v � c and v � c, where v is the velocity of the
(moving) particle before the collision in the system †.

Exercise 2.5.20 A �C-meson at rest decays within 2:5 � 10�8 s into a �C-meson
and a neutrino. Let the �C-meson have a kinetic energy which is equal to its rest
energy.

1. What is the velocity of the �C-meson?
2. Which distance is covered by the meson before its decay, detected by an

observer‘at rest’?

Exercise 2.5.21 In the case of a non-relativistic collision of two particles with equal
masses the trajectories enclose after the collision an angle of �=2. Show that for the
relativistic collision it holds (see notations in Fig. 2.5)

tan' tan# D 2

� C 1

�
� D �1 � v2=c2

��1=2
�
. Demonstrate that # C ' � �=2, where the equality sign

becomes valid in the non-relativistic limit .� ! 1/.

Exercise 2.5.22 Let a photon (rest mass m D 0) have the same momentum as a
1MeV-electron. What is the energy of the photon?

2.6 Self-Examination Questions

To Section 2.1

1. What is to be understood by the covariant formulation of a physical law?
2. Are the Newtonian laws form-invariant under Lorentz transformations?
3. How many components does a tensor of zeroth (first, second) rank have?
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4. How does a contravariant (covariant) four-vector behave under a Lorentz
transformation?

5. Define the three different types of second-rank tensors!
6. Which type of second-rank tensor represents in the strict sense a matrix?
7. What does the contraction of a tensor mean? How does the rank of a tensor

change with such a contraction?
8. How is the scalar product of four-vectors defined?
9. How can one convert a covariant into a contravariant tensor?
10. How are gradient, divergence, and d’Alembert operator written in the four-

dimensional version?

To Section 2.2

1. How is the differential .d	/2 of the proper time connected with the differential
length square .ds/2?

2. How is the world-(four-)velocity u � defined?
3. Which physical meaning does the norm of the world-velocity have?
4. Which considerations lead to which ansatz for the relativistic generalization of

the Newton’s law of inertia?
5. Which analogy-considerations lead to the space components of the four-

momentum and the Minkowski force?
6. How does the Minkowski force K � look like?
7. Calculate the scalar product K �u � of Minkowski force and world-velocity!
8. Which physical meaning does the time component of the Minkowski force

have?
9. Comment on the relativistic expression of the kinetic energy Tr. How does it

look like for v � c?
10. What does one understand by the rest energy of a mass point?
11. Which meaning does the time component of the four-momentum have?
12. Which simple relation exists between the rest energy and the norm p �p� of the

four-momentum?
13. Which relationship exists in the Special Theory of Relativity between the

conservation laws of momentum and energy?
14. Explain the equivalence of mass and energy!
15. Which physical process allows for a direct derivation of the relativistic momen-

tum pr and the relativistic kinetic energy Tr?
16. How do pr and Tr behave under a Lorentz transformation?

To Section 2.3

1. What is the reason why charge density � and current density j are not Lorentz
invariant, in contrast to the charge q itself?

2. How are charge density and current density influenced by a change of the

inertial system †0

v! †?
3. How is the four-current density j � defined?



2.6 Self-Examination Questions 97

4. Which meaning does the divergence @�j � of the four-current density have?
5. How is the continuity equation written in covariant four-dimensional form?
6. What are the components of the electromagnetic four-potential A �?
7. Formulate the covariant wave equations of the electromagnetic potentials! How

are they related to the Maxwell equations?
8. How does the Lorenz gauge read in covariant form?
9. Which relation exists in the Minkowski space between the electric field E and

the magnetic induction B?
10. Why can the field-strength tensor be seen as four-dimensional generalization of

the curl of A �?
11. How do the covariant and the contravariant field-strength tensor differ?
12. Give a Lorentz invariant of the electromagnetic field!
13. Is it possible by use of a Lorentz transformation to transfer a pure B-field into

a pure E-field?
14. How can the Maxwell equations be expressed by the field-strength tensor?

Demonstrate the covariance!
15. What does one understand by the dual field-strength tensor?
16. By which substitution of the fields does one get from the covariant to the dual

field-strength tensor?
17. How can one represent the homogeneous Maxwell equations by the dual field-

strength tensor?
18. How is the scalar product of E and B influenced by a change of the inertial

system?
19. Is the electric field of a moving point charge radial in the rest system of the

observer? Is it isotropic?
20. What is valid for the amplitudeE.ˇ/=E.0/ of the electric field of a point charge,

in the direction of the motion .' D 0; �/ and perpendicular to that .' D �=2/,
respectively?

21. How is the covariant formulation of the Lorentz force found by the use of the
field-strength tensor?

To Section 2.4

1. What does the equivalence principle mean for the action functional S?
2. Formulate the covariant Hamilton principle!
3. How are the covariant Lagrange equations of motion to be read?
4. What is the relativistically correct form of the Lagrange function L0 for a force-

free particle?
5. How can the canonical momentum be derived from the relativistic Lagrange

function?
6. Give reasons for the covariant Lagrange function L of a particle in the

electromagnetic field!
7. Express the Minkowski force K � of a particle in the electromagnetic field by

the world-velocity u � and the four-potential A �.
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8. Give the time component of the Minkowski force which acts on a particle in the
electromagnetic field!

9. Discuss the difference between the canonical and the mechanical momentum
of a particle in the electromagnetic field.

10. How is the time component of the canonical momentum of a particle in the
electromagnetic field related to its total energy E?

11. Formulate the relativistic total energy of a charged particle in the electromag-
netic field!



Appendix A
Solutions of the Exercises

Section 1.6

Solution 1.6.1 Let † and †0 be two inertial systems which move in z-direction
relative to one another with the velocity v D 0:8 c. Let † be the rest system of the
earth, †0 that of the space craft:

†
v�! †0 :

The origins of coordinates coincide exactly when the spaceship has the distance
d from the earth. (Let the spaceship be at the origin of †0.) According to (1.20)
and (1.21):

z0 D �.z� v t/ I t0 D �
�

t � v

c2
z
�

:

In † the signal is emitted at the space-time point

z0 D �d I t0 D 0 ;

and in †0 at:

z0
0 D �� d I t00 D �

v

c2
d :

The signal has in †0 the velocity c and reaches the ship after the lapse of time:

�t0 D � d

c
(solution for 2.).
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The arrival of the signal has in † the coordinates:

z1 D position of the ship at the time t1 ;

z1 D v t1 :

We look for t1. In †0 it holds for the point .z1; t1/:

z0
1 D �.z1 � v t1/ D 0 ;

t01 D �
�

t1 � v

c2
z1

�
D � t1

�
1 � v2

c2

�
D t1

�
:

The transit time, seen from the ship, thus amounts to:

�t0 D t01 � t00 D
t1
�
� �d

c2
v :

We equalize the two expressions for �t0 and solve for t1:

t1 D �2d

c

�
1C v

c

�
D d

c � v
:

Since t0 D 0 it follows for the transit time, measured on the earth-station:

�t D t1 � t0 D d

c � v
(solution for 1.) :

Numerical values:

� D �1 � .0:8/2
��1=2 D 5

3
D 1:667

H) �t D 3700 s ;

�t0 D 11:100 s :

Observed from †0 the signal reaches the spaceship at an earth-distance of

�z0 D dC v �t0

D �
6:66 � 108 C 26:64 � 108

�
km

D 3:33 � 109 km :
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Solution 1.6.2

v D 3

5
c H) � D 5

4
;

x D x0 D 10m I y D y0 D 15m ;

z D �
�
z0 C v t0

� D 5

4

�
20C 9

5
4

�
m D 34m ;

t D �
�

t0 C v

c2
z0� D 5

4

�
4C 1

5
20

�
10�8 s D 1 � 10�7 s :

Solution 1.6.3

t01 D t02 ” �
�

t1 � v

c2
z1

�
D �

�
t2 � v

c2
z2

�

” v

c2
.z2 � z1/ D t2 � t1

” v D c2 t2 � t1
z2 � z1

D c2
� 1

2
z0

c

z0

” v D �1

2
c :

The time in †0 results from:

t0 D �
�

t1 � v

c2
z1

�
D 1q

1 � 1
4

�
z0

c
C 1

2

z0

c

�

H) t0 D p3
z0

c
:

Solution 1.6.4 It holds in †:

z1 D z2 I t2 � t1 D 4 s :

†0 moves with the velocity v relative to †. We determine v by:

t02 � t01 D �
h
t2 � t1 � v

c2
.z2 � z1/

i
D � 4 s

ŠD 5 s

H) � D 5

4
H) ��2 D 16

25
D
�

1 � v2

c2

�

H) v D 3

5
c :
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This yields the spatial distance in †0:

z0
2 � z0

1 D � Œz2 � z1 � v .t2 � t1/�

D � v .t1 � t2/ D .�4 s/
5

4

3

4
3 � 108 m

s

D � 0:9 � 109 m :

Solution 1.6.5 It is measured in †:

t1 D t2 I z2 � z1 D 3 km :

In †0:

z0
2 � z0

1 D 5 km :

This means:

5 km D Œz2 � z1 � v .t2 � t1/� � D � 3 km

H) � D 5

3
H) v D 4

5
c :

For the time distance we get therewith:

t02 � t01 D ��
v

c2
.z2 � z1/

D �5

3

4

5

1

3
� 10�5 s

km
3 km D �4

3
� 10�5 s :

Solution 1.6.6 Relative velocity v between inertial systems † and †0 in arbitrary
space direction.

r W position vector in † :

Decomposition:

rk D 1

v2
.r � v/v W component parallel to v ;

r? D r � rk W component perpendicular to v :

Analogous decomposition in †0:

r0 D r0
k C r? I r0

k D
1

v2

�
r0 � v

�
v :
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The perpendicular component remains unchanged under the transformation:

r0? D r? D r � 1

v2
.r � v/v :

We exploit the isotropy of the space which permits us to rotate the z-axis into the
direction of v. The subsequent argumentation corresponds to that of the special case
v D v ez, with which (1.16) has been derived:

r0
k D

1

v

�
r0 � v

� D �

�
1

v
.r � v/� vt

�

t0 D �

 
t � ˇ

c

1

v
.r � v/

„ ƒ‚ …
rk

!
:

It remains altogether:

r0 D r � � v tC � � 1

v2
.r � v/v

t0 D �

�
t � ˇ

c

1

v
.r � v/

�
:

Transformation matrix:

ux; y; z D vx; y; z

v
; ˇ D v

c

OL �

0
BBBBBBBBB@

� � ˇ�ux � ˇ�uy � ˇ�uz

�� vx
c 1C .� � 1/u2

x .� � 1/uxuy .� � 1/uxuz

��
vy

c .� � 1/uyux 1C .� � 1/u2
y .� � 1/uyuz

��
vz
c .� � 1/uzux .� � 1/uzuy 1C .� � 1/u2

z

1
CCCCCCCCCA

:

Special case: v D v ex H) ux D 1 ; uy D uz D 0

OL �

0
BB@

� �ˇ� 0 0

�ˇ� � 0 0

0 0 1 0

0 0 0 1

1
CCA :
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Fig. A.1

Solution 1.6.7

1. In †0 the length contraction (1.28) takes place in z-direction (Fig. A.1):

† W l0 D
�

1p
2
l0 ; 1p

2
l0
�

;

†0 W l00 D
�

1p
2
l0 ; 1

�
1p
2
l0
�

:

This means:

tan˛0 D l00x

l00z

D
1p
2
l0

1
�

1p
2
l0
D �

H) ˛0 D arctan� I � D
�

1 � v2

c2

��.1=2/

:

2. u ¤ u.t/

H) tan˛ D ux

uz
D v

2v
D 1

2
H) ˛ D arctan

1

2
:

It holds in †0 ((1.36), (1.38)):

u0
x D

1

�

ux

1 � v uz

c2

I u0
z D

uz � v

1 � v uz

c2

H) tan˛0 D u0
x

u0
z

D 1

�

ux

uz � v
D 1

�

v

2v � v
D 1

�

H) ˛0 D arctan
1

�
:
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3. The photon moves with the velocity of light:

H) ux D 1p
2

c I uz D 1p
2

c

H) tan˛0 D 1

�

ux

uz � v
D c

�
�

c �p2v
�

H) ˛0 D arctan

2
64c
q

1 � v2

c2

c �p2 v

3
75 :

Solution 1.6.8

† W rest system of the observer

†0 W rest system of the rocket :

Choose the system of coordinates such that the two origins coincide with P0 at
t D t0 D 0.

1. t0a D 0 I t0e D L0

c .
2. † moves relative to †0 with .�v/:

z D �
�
z0 C v t0

� I t D �
�

t0 C v

c2
z0
�

;

ta D 0 ;

te D �
�

t0e C
v

c2
z0
e

�
D �

�
L0

c
C v

c2
.�L0/

	

D �
L0

c
.1 � ˇ/ D L0

c

s
.1 � ˇ/2

1 � ˇ2

H) te D L0

c

s
1 � ˇ

1C ˇ
:

3. z0 D 0 H) z0
0 C v t00 D 0

z0
0: position of the end of the rocket in †0, i.e.:

z0
0 D �L0 H) t00 D

L0

v
:

t0 is looked for:

t0 D �
�

t00 C
v

c2
z0
0

�
D �

L0

v
.1 � ˇ2/ D L0

� v
:
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Solution 1.6.9 The formulae (1.36) to (1.38) follow for the velocity components
according to the Lorentz transformation. These are to be evaluated for the given
special case:

ux D 0 ; uy D c ; uz D 0 H) u0
x D 0 ; u0

y D
1

�
c ; u0

z D �v

H) u0 D
s

c2

�2
C v2 D

p
c2 D c

u0 D
�

0;
1

�
c;�v

�
D c

�
0;

1

�
;�ˇ

�
:

Solution 1.6.10

(a) x1 � x2 D .�3m; 0;�4m/

H) jx1 � x2j2 D 25m2 ;

c2 .t1 � t2/2 D 9 � 1016 m2

s2
9 � 10�16 s2 D 81m2

H) The space-time interval

s2
12 D c2 .t1 � t2/2 � jx1 � x2j2 D 56m2 > 0

is time-like. A causal correlation is therefore possible! Simultaneity, however, is
not reachable by any Lorentz transformation.

(b)

x1 � x2 D .3m;�5m;�5m/

H) jx1 � x2j2 D 59m2 ;

c2 .t1 � t2/
2 D 9 � 1016m

2

s2
4 � 10�16 s2 D 36m2 :

The space-time interval

s2
12 D 36m2 � 59m2 D �23m2 < 0

is space-like. It is therefore no causal correlation possible. In contrast, simul-
taneity is reachable.

ˇ2 D c2 .t1 � t2/2

jx1 � x2j2
D 36

59
D 0:61 :
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The inertial system †0 has to move with the velocity

v D 0:781 c D 2:343 � 108 m

s

in the direction of .x1 � x2/, in order to let the events appear simultaneously
in †0.

Solution 1.6.11

1. Time distance, seen from the earth:

�t0 D �tq
1 � v2

c2

:

The lifetime of the muon 	 in its own rest system amounts in the earth-system to:

�t	 D 	q
1 � v2

c2

:

In order that the muon reaches the surface of the earth, we must have:

�t	
Š� H

v
:

v here is the velocity of the muon.

" D c � v

c
Õ v

c
D 1� "

Õ v2

c2
D 1 � 2"C "2 � 1 � 2" Õ 1� v2

c2
� 2" :

It remains the requirement:

�t	 � 	p
2"

Š� H

v

Õ " � 1

2

�	v

H

�2 � 1

2

�	c

H

�2

D 1

2

 
2 � 10�6 s � 3 � 1010 cm

s

30 � 105 cm

!2

D 1

2

�
2 � 104

106

�2

D 2 � 10�4 :

It follows therewith:

v D c.1 � "/ � c
�
1 � 2 � 10�4

� D 0:998 c :
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2. Because of the length contraction, the distance to the earth, as seen from the
muon, amounts to:

H0 D H

s
1 � v2

c2
� H
p

2"

� 30 � 103 m �
p

4 � 10�4 D 600m :

The distance is thus less than 600m, which the muon is approximately able to
cover within its lifetime!

Solution 1.6.12 Before the interference the rays traverse a rectangle but in opposite
directions. That allows for a very accurate measurement of the velocity of light in a
medium which itself moves with the velocity v.

• v1 D ˙v:
velocity of the flowing liquid relative to the ‘at rest’ laboratory frame.

• v2 D ˙ c
n :

velocity of light in the medium, i.e. relative to the flowing liquid.
• v3:

sought-after velocity of the light relative to the laboratory frame.

parallel paths of rays:

upper: †1

v�! †2

c
n�! †3 :

Addition theorem of velocities:

v
p
3 D

v C c
n

1C v
nc

�
�
v C c

n

� �
1 � v

nc

�
� v C c

n
� v

n2
:

Here v � c was exploited. It therefore holds in the upper part of the tube:

ˇ̌
v
p
3

ˇ̌ � c

n
C v

�
1 � 1

n2

�
:

For the lower part of the tube we have:

lower: †1

�v�! †2

� c
n�! †3 :

Addition theorem of velocities:

v
p
3 D
�v � c

n

1C v
nc

� �
�
v C c

n

� �
1 � v

nc

�
� �v � c

n
C v

n2
:
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That yields the same magnitude of velocity:

ˇ̌
v
p
3

ˇ̌ � c

n
C v

�
1 � 1

n2

�
:

The time needed in both parts of the tube in the case of parallel paths of rays thus
amounts to:

tp D 2l
c
n C v

�
1 � 1

n2

� :

antiparallel paths of rays:

upper: †1

v�! †2

� c
n�! †3 :

Addition theorem of velocities:

v
ap
3 D

v � c
n

1 � v
nc

�
�
v � c

n

� �
1C v

nc

�
� v � c

n
� v

n2
D � c

n
C v

�
1 � 1

n2

�
:

Here again v � c was used. It therefore holds in the upper part of the tube in the
case of antiparallel paths of rays:

ˇ̌
v
ap
3

ˇ̌ � c

n
� v

�
1 � 1

n2

�
:

For the lower part of the tube we have:

lower: †1

�v�! †2

c
n�! †3 :

That leads with the addition theorem of velocities to:

v
ap
3 D

�v C c
n

1 � v
nc

�
�
�v C c

n

� �
1C v

nc

�
� �v C c

n
C v

n2
D c

n
� v

�
1 � 1

n2

�
:

That yields the same magnitude of velocity as in the upper part:

ˇ̌
v
ap
3

ˇ̌ � c

n
� v

�
1 � 1

n2

�
:

The time needed in both parts of the tube in the case of antiparallel paths of rays
thus amounts to:

tap D 2l
c
n � v

�
1 � 1

n2

� :
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That results in a difference of the transit times:

�t D tap � tp D 2l

 
1

c
n � f v

� 1
c
n C f v

!
:

The Fresnel’s dragging coefficient is therewith calculated to be:

f D 1 � 1

n2
:

In the case n D 1:33 for water it turns out to be a surely measurable effect.
The agreement of theory and experiment proves the correctness of the Lorentz
transformation, here demonstrated for the addition theorem of velocities!

Section 2.5

Solution 2.5.1 Definition equation for the metric tensor is given in (2.18):

.ds/2 D �˛ˇ dx˛ dxˇ :

‘Lowering’ of an index:

�˛ˇ dxˇ D dx˛ :

Therewith one realizes that

.ds/2 D dx˛ dx˛ D .dx; dx/

is a scalar product and thus a Lorentz invariant. That is then also true for

�˛ˇ dx˛ dxˇ :

Consider the change of the inertial system:

† �! b†
It must be required:

O�˛ˇ d Ox˛ dOxˇ ŠD �˛ˇ dx˛ dxˇ :
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Otherwise it holds:

O�˛ˇ dOx˛ dOxˇ D O�˛ˇ

@Ox˛

@x�
dx� @Oxˇ

@x�
dx� D O���

@Ox�

@x˛

@Ox�

@xˇ
dx˛ dxˇ :

In the second step we could interchange the indexes because of the summation
convention. The comparison yields:

�˛ˇ D O���

@Ox�

@x˛

@Ox�

@xˇ
:

Transformation behavior:

@x˛

@Ox�

@xˇ

@Ox�
�˛ˇ D O���

@x˛

@Ox�

@xˇ

@Ox�

@Ox�

@x˛

@Ox�

@xˇ
D O��� ı�� ı�� D O��� :

That is the transformation behavior of a covariant second-rank tensor!

Solution 2.5.2 We use the familiar notation and regard the summation convention:

†
OL�! b† :

1. Let a� be a contravariant four-vector Õ

Oa� D @Ox�

@x˛
a˛ D L�˛a˛ :

x� is the position vector in the Minkowski space. Let now b� be a four-
component vector with at first unknown transformation behavior. Then:

Oa� Ob� D @Ox�

@x˛
a˛ Ob�

D a˛ @Ox�

@x˛
Ob�

D a� @Ox˛

@x�
Ob˛

ŠD a�b� (Lorentz invariant).

In the third step we have simply interchanged the indexes ˛ and �, which is of
course allowed because of the summation convention. Since a� is arbitrary it
follows already

b� D @Ox˛

@x�
Ob˛ :
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Transformation behavior:

@x�

@Oxˇ
b� D @x�

@Oxˇ

@ Ox˛

@x�
Ob˛ D . OL�1/�ˇ L˛�„ ƒ‚ …

ı˛ˇ

Ob˛ :

Hence it holds:

Obˇ D @x�

@Oxˇ
b� :

b� therefore transforms like a covariant four-vector.
2. We calculate:

OT�
 Oa� Oc
 D OT�


@Ox�

@x˛
a˛ @Ox


@xˇ
cˇ

D @Ox�

@x˛

@Ox


@xˇ
OT�
 a˛cˇ

D @Ox˛

@x�

@Oxˇ

@x

OT˛ˇ a�c
 (indexes �; ˛ and 
; ˇ interchanged)

ŠD T�
 a�c
 (Lorentz invariant!)

a� and c
 arbitrary Õ

T�
 D @Ox˛

@x�

@Oxˇ

@x

OT˛ˇ :

Transformation behavior:

@x�

@Ox�

@x


@Oxı
T�
 D @x�

@Ox�

@x


@Oxı

@Ox˛

@x�

@Oxˇ

@x

OT˛ˇ D ı˛� ııˇ

OT˛ˇ D OT�ı :

T�
 is therefore a covariant tensor of second rank.

Solution 2.5.3 According to (2.40) we have for the four-velocity:

u� D �.v/.c; v/ :

The proper time 	 is Lorentz invariant. Hence

b� D d

d	
u�

is a contravariant four-vector.
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(a)

u�u� D �2
�
c2 � v2

� D c2 :

It follows:

d

d	
u�u� D 0 D ��


d

d	
.u
u�/ :

��
 is the metric tensor. Note the summation convention. It therefore holds:

0 D 2 ��
 u
 d

d	
u� D 2 u�

d

d	
u� D 2 u�b� :

This is the assertion:

.u; b/ D u�b� D 0 :

(b)

b� D d

d	
u� D du�

dt

dt

d	
:

According to (2.38):

dt D d	q
1 � v2

c2

D � d	 ;

and therewith

b� D �
du�

dt
:

We use

dv

dt
D d

dt

q
v2

x C v2
y C v2

z

D 1

v

�
vx Pvx C vy Pvy C vz Pvz

� D v
v

� dv
dt

for the calculation of

d

dt
�.v/ D

�
1 � v2

c2

��3=2
v

c2

dv

dt
D .�.v//3 1

c2

�
v � dv

dt

�
:
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By insertion we get the components of the acceleration:

b0 D �
d

dt
.�c/ D 1

c

�
1 � v2

c2

��2 �
v � dv

dt

�
;

b1 D �
d

dt
.�vx/ D

dvx
dt

1 � v2

c2

C vx

c2

�
1 � v2

c2

��2 �
v � dv

dt

�
;

b2 D �
d

dt

�
�vy

� D
dvy

dt

1 � v2

c2

C vy

c2

�
1 � v2

c2

��2 �
v � dv

dt

�
;

b3 D �
d

dt
.�vz/ D

dvz
dt

1 � v2

c2

C vz

c2

�
1� v2

c2

��2 �
v � dv

dt

�
:

Solution 2.5.4

1. Momentary rest system of the rocket †0 (see solution to Exercise 2.5.3 for v0
x D

v0
y D v0

z D 0I dv0
z=dt D g):

b0� D

0
BB@

0

0

0

g

1
CCA

†0 ! † by Lorentz transformation of the contravariant four vector

b� D L�� b0� H) bz D b3 D �g D gp
1 � v2=c2

v D v.t/ W momentary velocity of the rocket .� ez/ :

It is also valid

b3 D d

d	
uz D �

d

dt
� vz

.vz D v/ H) �g D �
d

dt
� v H) g D d

dt

 
vp

1 � v2=c2

!
:

After integration:

gt D v.t/q
1 � v2.t/

c2

:
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Fig. A.2

non-relativistic

Solving for v.t/:

v.t/ D c
gt=cq

1C .gt=c/2

H) v �!
t!1 c :

2. Approximately after 1 year. Non-relativistically one finds (Fig.A.2):

v D gt ' 9:8
m

s2
� 86:400 s � 365 � 3 � 108 m

s
:

3.

v.t/ D dz

dt
with z.t D 0/ D 0 ;

z.t/ D c2

g

�q
1C .gt=c/2 � 1

�
:

gt � c W z.t/ � 1

2
gt2 ;

gt � c W z.t/ � ct :

4.

Tr D mc2p
1 � v2=c2

;

p
1 � v2=c2 D 1q

1C .gt=c/2
H) Tr D mc2

q
1C .gt=c/2 :
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5. Proper-time interval d	 :

d	 D
p

1 � v2=c2 dt I
p

1 � v2=c2 D 1q
1C .gt=c/2

:

Integration:

	 D c

g
ln

�
gt

c
C
q

1C .gt=c/2

�
:

Reversal:

t D c

g
sinh

�g 	

c

�
:

Numerical example:

	 (years) t (years)
4 30

8 1855:6

40 3:98 � 1017

100 2:95 � 1044

Solution 2.5.5

1. non-relativistic:
(Momentary) law of momentum in the frame of laboratory:

Mv D .M � dm/.v C dv/C dm.v � v�/ :

To the left the momentum before, to the right the momentum after the expulsion.
We neglect quadratic terms of the differentials:

Mv � Mv CM dv � v�dm Õ M dv D v�dm :

Let m D M0 �M be the mass of the so far not yet ejected fuel, i.e., dm D �dM.
Then it remains to be integrated:

dM

M
D � 1

v� dv

Z M

M0

d lnM0 D � 1

v�

Z v

0

dv0
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with the result:

v D v� ln
M0

M
: (A.1)

For M ! 0 the velocity of the rocket grows indefinitely.
alternatively:
Law of conservation of momentum in the center-of-mass system:

0 D .M � dm/ dvr � v�dm :

dvr is thereby the velocity of the rocket relative to its (own) rest system, produced
by the expulsion. If one neglects again quadratic terms of the differentials then it
remains:

M dvr � v�dm :

Now it holds, however, according to Galilei: v C dv D v C dvr. Thus it is
dvr D dv. We obtain therefore the same differential equation as above, with the
same result (A.1).

2. relativistic
It is recommendable to use the center-of-mass system, i.e., the momentary

rest system of the rocket.
Relativistic law of momentum:

0 D �r.M � dm/ dvr � ��d Nm v�

�r D
 

1 �
�

dvr

c

�2
!� 1

2

�� D
 

1 �
�

v�

c

�2
!� 1

2

:

Note that dm ¤ d Nm, since a part of the ejected mass dm is needed for the
kinetic energy for the flying away mass d Nm. Quadratic differentials shall again
be neglected, i.e. in particular: �r � 1. Then we have:

M dvr D d Nm v�q
1 � � v�

c

�2 : (A.2)
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We still need d Nm. For this purpose we use the conservation of energy law:

Mc2 D .M � dm/ c2q
1 � � dvr

c

�2 C
d Nm c2q

1 � � v�

c

�2

� .M � dm/ c2 C d Nm c2q
1 � � v�

c

�2

Õ dm D d Nmq
1 � � v�

c

�2 : (A.3)

As expected dm > d Nm, since a part of the mass is converted into kinetic energy.
Insertion of (A.3) into (A.2) yields with

M dvr D v� dm (A.4)

a conditional equation which formally holds non-relativistically also. However,
for the transition from the center-of-mass system to the laboratory system the
addition theorem of velocities has to be obeyed. In the laboratory system the
velocity change v C dv is observed:

v C dv Š v C dvr

1C v dvr
c2

� .v C dvr/

�
1 � v dvr

c2

�

� v C dvr � v2

c2
dvr D v C .1 � ˇ2/ dvr

Õ dv � .1 � ˇ2/ dvr :

Hence it is dv < dvr! Insertion into (A.4) yields:

M dv

1 � ˇ2
D v� dm :

Let m D M0�M again be the mass of the so far ejected fuel, then it follows with
dm D �dM the conditional equation

dv

1 � ˇ2
D �v� dM

M
:

This can be easily integrated:

Z v

0

dv0

1 � ˇ02 D
c

2

Z ˇ

0

.d ln.1C ˇ/ � d ln.1 � ˇ// D �v�
Z M

M0

d lnM
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with the result:

c

2
ln

1C ˇ

1 � ˇ
D v� ln

M0

M
: (A.5)

In the non-relativistic limit ˇ� 1 this yields because of

ln
1C ˇ

1 � ˇ
D ln.1C ˇ/� ln.1 � ˇ/ � 2ˇ

just the result (A.1). In contrast, it follows with

1C ˇ

1 � ˇ
D
�

M0

M

� 2v�

c

relativistically correct:

v D c
1 �

�
M
M0

� 2v�

c

1C
�

M
M0

� 2v�

c

: (A.6)

Now v does not grow indefinitely for M ! 0 but saturates at the limiting
velocity c.

Solution 2.5.6

†
v ez�! b† (inertial system)

To be shown:

Z t2

t1

1

�u.t/
dt

ŠD
Z Ot2

Ot1
1

�Ou.Ot/
dOt :

Ou D Ou.Ot/ is here the velocity of the particle in b† and

�Ou.Ot/ D
�

1 � Ou
2.Ot/
c2

�� 1
2

:

Transformation formulae:

Oz D �v.z.t/ � v t/ Õ dOz D �v.u � v/ dt

Ot D �v

�
t � v

c2
z.t/

�
Õ dOt D �v

�
1 � v

c2
u
�

dt

Õ Ou D dOz
dOt D

u � v

1 � v
c2 u

:
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The Special Theory of Relativity is valid for all points of the world line of the
particle, and therefore these formulae apply accordingly!We now substitute Ot D Ot.t/
with

dt D 1

�v

1

1 � v
c2 u.t/

dOt

and calculate:

Z Ot2

Ot1
1

�Ou
dOt D

Z Ot2

Ot1

s
1 � Ou

2.Ot/
c2

dOt

D
Z t2

t1

0
B@1 � 1

c2

.u.t/� v/2

�
1 � u.t/

c2 v
�2

1
CA

1
2

�v

�
1 � v

c2
u.t/

�
dt

D
Z t2

t1

��
1 � v

c2
u.t/

�2 � 1

c2
.u.t/� v/2

� 1
2

�v dt

D
Z t2

t1

�
1C v2

c4
u2.t/ � 2v

c2
u.t/� 1

c2
u2.t/ � v2

c2
C 2u.t/v

c2

� 1
2

�v dt

D
Z t2

t1

��
1 � v2

c2

��
1 � 1

c2
u2.t/

�� 1
2

�v dt

D
Z t2

t1

�
1 � 1

c2
u2.t/

� 1
2

dt

D
Z t2

t1

1

�u
dt :

From that it follows indeed that the proper time is an invariant, as already shown in
a different manner in Sect. 2.2.1!

Solution 2.5.7 For † ! b† the transformation formulae (2.142) and (2.143) are
applicable:

bE D � .EC c.ˇ 	 B// � �2

1C �
ˇ .ˇ � E/

bB D �

�
B � 1

c
.ˇ 	 E/

�
� �2

1C �
ˇ .ˇ � B/ I ˇ D v

c
:
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For b†! †, i.e. ˇ ! �ˇ, it is then:

E D �
�bE� c.ˇ 	bB/

�
� �2

1C �
ˇ .ˇ �bE/

B D �

�
bBC 1

c
.ˇ 	bE/

�
� �2

1C �
ˇ .ˇ �bB/ :

1. bB � 0

E D �bE � �2

1C �
ˇ .ˇ �bE/

B D �

c
.ˇ 	bE/ :

It follows therewith:

ˇ 	 E D �.ˇ 	bE/ D cB

Õ B D 1

c2
.v 	 E/ :

Lorentz invariants (Sect. 2.3.5):

E � B and c2B2 � E2 :

Therewith it follows frombE �bB D 0:

E � B D 0

and from

c2bB2 �bE2 D �bE2 < 0

one finds

c2B2 � E2 < 0 :

2. bE � 0

Õ E D ��c.ˇ 	bB/

B D �bB� �2

1C �
ˇ .ˇ �bB/ :
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This means,

ˇ 	 B D �.ˇ 	bB/ D �

�
� 1

�c

�
E ;

and therewith

E D B 	 v :

Lorentz invariants:

bE �bB D 0 Õ E � B D 0

c2bB2 �bE2 D c2bB2 > 0 Õ c2B2 � E2 > 0 :

Solution 2.5.8 It holds in †:

F D q u 	 B D q.0; a B;�a B/D q a B.0; 1;�1/ :

In †0 one finds (2.165)–(2.167):

F0
x D

1

�

Fx

1 � v uz
c2

D 0 ; � D
�

1 � v2

c2

��1=2

;

F0
y D

1

�

Fy

1 � v uz

c2

D 1

�

q a B

1 � v a
c2

:

F � u D q a2 B.1 � 1/ D 0:

F0
z D

Fz � v
c2 .F � u/

1 � v uz
c2

D �q a B

1 � v a
c2

H) F0 D q a B

1 � v a
c2

�
0;

1

�
;�1

�
:

Solution 2.5.9 Let † and †0 be two arbitrary inertial systems with

†
v�! †0 .v D v ez/ :

We show that

�
B0 C i

c
E0
�2

ŠD
�

BC i

c
E
�2
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The transformation formulae (2.132) to (2.137) yield:

B0
x C

i

c
E0

x D �

�
Bx C i

c
Ex

�
� i � ˇ

�
By C i

c
Ey

�
;

B0
y C

i

c
E0

y D �

�
By C i

c
Ey

�
C i �ˇ

�
Bx C i

c
Ex

�
;

B0
z C

i

c
E0

z D Bz C i

c
Ez :

From that we get:

�
B0 C i

c
E0
�2

D
�

Bx C i

c
Ex

�2

�2.1 � ˇ2/

C
�

By C i

c
Ey

�2

�2.1 � ˇ2/C
�

Bz C i

c
Ez

�2

D
�

BC i

c
E
�2

:

Solution 2.5.10 Because of F
�
 D �F


�
all the diagonal elements are zero,

F
�� D F�� D 0 ; � D 0; 1; 2; 3

and we need to calculate only the elements F
�


with � < 
:

F
12 D 1

2
"12�� F�� D 1

2

�
"1230F30 C "1203F03

� D

D 1

2
.�F30 C F03/ D F30 D 1

c
Ez ;

F
13 D 1

2
"13�� F�� D 1

2

�
"1320F20 C "1302F02

�

D 1

2
.F20 � F02/ D F02 D �1

c
Ey ;

F
01 D 1

2
"01�� F�� D 1

2

�
"0123F23 C "0132F32

�

D 1

2
.F23 � F32/ D F23 D �Bx ;

F
23 D 1

2
"23�� F�� D 1

2

�
"2310F10 C "2301F01

�

D 1

2
.�F10 C F01/ D F10 D 1

c
Ex ;
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F
02 D 1

2
"02�� F�� D 1

2

�
"0213F13 C "0231F31

�

D 1

2
.�F13 C F31/ D F31 D �By ;

F
03 D 1

2
"03�� F�� D 1

2

�
"0312F12 C "0321F21

�

D 1

2
.F12 � F21/ D F12 D �Bz :

The correctness of the statement is evident.

Solution 2.5.11

†
vez�! b† :

1. Point charge q ‘at rest’ at the origin of coordinates in b†. Hence, the potentials inb† are:

O' D q

4�"0

1

Or I
OA D 0 :

Here

Or D
p
Ox2 C Oy2 C Oz2 D

p
x2 C y2 C �2.z� vt/2 :

On the right-hand side Or is expressed by †-coordinates. Therewith the four-
potential reads:

OA� D
�

q

4�"0c

1

Or ; 0; 0; 0

�
:

Potentials in †

A� D
� OL�1

�
�˛

OA˛
� OL�1 � OL.v ! �v/

�
:

Transformation formulae:

A0 D � OA0 C �ˇ OA3 D � OA0 D �
q

4�"0c

1

Or
A1;2 D OA1;2 D 0

A3 D �ˇ OA0 C � OA3 D �ˇ OA0 D �ˇ
q

4�"0c

1

Or
Õ A� D q

4�"0

1

Or �
1

c
.1; 0; 0; ˇ/ :
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That means explicitly for the electromagnetic potentials:

'.x; y; z; t/ D q

4�"0

�p
x2 C y2 C �2.z � vt/2

A.x; y; z; t/ D q

4�"0

v

c2

�p
x2 C y2 C �2.z� vt/2

.0; 0; 1/ :

2. Fields in †:

(a) Magnetic induction:

B D curlA D
�

@

@y
Az;� @

@x
Az; 0

�
:

With

@

@y

1

Or D �
y

Or3
I @

@x

1

Or D �
x

Or3

it follows

B D q

4�"0

�
ˇ

c

1

Or3
.�y; x; 0/ :

(b) Electric field:

E D �r' � PA D �
�

@'

@x
;

@'

@y
;

@'

@z
C PAz

�
:

It is:

r' D q

4�"0

�

�
� 1

Or3

�
.x; y; �2.z � vt//

Furthermore:

PA D q

4�"0

�
v

c2

�
� 1

Or3

�
.0; 0;��2.z � vt/v/ :

This means eventually:

E D q

4�"0

�
1

Or3
.x; y; z � vt/ :

Because of

ˇ 	 E D ˇ.�Ey; Ex; 0/
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it follows obviously:

B D 1

c
.ˇ 	 E/ :

3. One recognizes:

1

c2

@2'

@t2
D v2

c2

@2'

@z2

and therewith

�' D
�
4� 1

c2

@2

@t2

�
' D

�
@2

@x2
C @2

@y2
C
�

1� v2

c2

�
@2

@z2

�
'

D
�

@2

@x2
C @2

@y2
C 1

�2

@2

@z2

�
' :

We substitute:

u D z � vt I v D 1

�
y w D 1

�
x :

This means:

@

@x
D 1

�

@

@w
I @

@y
D 1

�

@

@v
I @

@z
D @

@u
:

It follows:

' D q

4�"0

�p
�2w2 C �2v2 C �2u2

D q

4�"0

1p
w2 C v2 C u2

:

It remains to be calculated:

�
@2

@x2
C @2

@y2
C 1

�2

@2

@z2

�
' D 1

�2

�
@2

@w2
C @2

@v2
C @2

@u2

�
' :

On the other hand, one gets with r � .w; v; u/:

�w;v;u
1

r
D �4� ı.r/ D �4� ı.w/ı.v/ı.u/ :
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So one can write:

�
@2

@x2
C @2

@y2
C 1

�2

@2

@z2

�
' D � q

4�"0

4�
1

�2
�ı.x/�ı.y/ı.z� vt/

D � q

"0

ı.x/ı.y/ı.z� vt/ D ��.r/

"0

:

That is valid for the point charge:

�.x; y; z/ D q ı.x/ı.y/ı.z� vt/ :

That was to be proven!

Solution 2.5.12

• In †:
Lorentz force on the point charge q:

F D q.EC v 	 B� :

The particle is at rest, i.e. v D 0. Thus:

F D qE :

• In †0:
Velocity of the particle: v0 D �v0. Therewith the Lorentz force reads:

F0 D q
�
E0 C .�v0/ 	 B0� :

• †; †0 are both inertial systems. Therefore it must hold: F D F0. This means here:

E0 D EC v0 	 B0 D EC ˛E 	 B0 :

Component in the direction of E:

1

E

�
E0 � E

� D 1

E
.E � E/C 0 D E :

That was to be shown.

Solution 2.5.13 Force on charge q in †:

F D q.EC u 	 B/
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with

u D .a; b; d/ I B D .0; B; 0/ I E D 1p
2

.E; E; 0/ :

Therefore:

u 	 B D .�Bd; 0; Ba/ :

That yields:

F D q

�
1p
2

E � Bd;
1p
2

E; Ba

�
:

Therewith we calculate

F � u D q

��
1p
2

E � Bd

�
aC 1p

2
EbC Bad

�
D 1p

2
qE.aC b/ :

With the formulae (2.165)–(2.167) we then find the forces in †0:

F0
x D

1q
1 � v2

c2

q
�

1p
2
E � Bd

�

1� vd
c2

F0
y D

1q
1 � v2

c2

q 1p
2
E

1 � vd
c2

F0
z D

q
�

Ba� v
c2

1p
2
E.aC b/

�

1� vd
c2

:

Solution 2.5.14

1. It holds according to (3.45), Vol. 3:

B D �0

4�

�
3.r � m/r

r5
� m

r3

�
;

Bx D �0

4�

3 m z x

r5
I By D �0

4�

3 m z y

r5
;

Bz D �0

4�

m

r5

�
2 z2 � x2 � y2

�
:
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2. Let †0 be the rest system of the dipole. As calculated in part 1. we find there the
fields:

B0
x D

�0

4�

3 m z0 x0

r05 I B0
y D

�0

4�

3 m z0 y0

r05 ;

B0
z D

�0

4�

m

r05
�
2 z02 � x02 � y02� ;

E0 � 0 I r0 D
p

x02 C y02 C z02 :

In † we have according to (2.132) to (2.137):

Bx D � B0
x D �

�0

4�
3m

z0x0

r05 ;

x0 D x I y0 D y I z0 D �.z� v t/

H) r0 D
p

x2 C y2 C �2.z � v t/2

H) Bx D �2 �0

4�
3m

x.z � v t/

Œx2 C y2 C �2.z� v t/2�
5=2

;

By D � B0
y D �2 �0

4�
3m

y.z � v t/

Œx2 C y2 C �2.z � v t/2�
5=2

;

Bz D B0
z D

�0

4�
m

2�2.z � v t/2 � x2 � y2

Œx2 C y2 C �2.z � v t/2�
5=2

;

Ex D C� ˇ c B0
y D v By ;

Ey D �� ˇ c B0
x D �v Bx ;

Ez D E0
z D 0 :

3.

e� D .cos'; sin'; 0/ I e' D .� sin '; cos'; 0/ I ez D .0; 0; 1/ :

Electric field:

E� D E � e� D Ex cos' C Ey sin' D v
�
By cos' � Bx sin'

�
D : : : .y cos' � x sin '/ D : : : .� sin ' cos' � � cos' sin '/ D 0 ;

E' D E � e' D �Ex sin' C Ey cos' D �v
�
By sin' C Bx cos'

�

D �2 �0

4�
3m

.z� v t/

.x2 C y2 C �2.z � v t/2/
5=2

.�v y sin' � v x cos'/
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Fig. A.3

D : : : � v �
�
sin2 ' C cos2 '

� D �2 �0

4�
3m

�v.z � v t/�

Œ�2 C �2.z � v t/2�
5=2

;

Ez D 0 ;

B� D Bx cos' C By sin ' D 1

v

�
Ex sin ' � Ey cos'

� D �1

v
E' ;

B' D �Bx sin ' C By cos' D 1

v

�
Ey sin ' C Ex cos'

� D 1

v
E� D 0 ;

Bz D �0

4�
m

2�2.z � v t/2 � �2

Œ�2 C �2.z � v t/2�
5=2

:

4. The E-lines are circles in the xy-plane with their centers at the origin of
coordinates (Fig.A.3):

E D E'.t/ e' ;

E'.tI z D 0/ D �2 �0

4�
3m

v2t

.�2 C �2v2t2/5=2
:

5. Closed E-lines can appear, because of curlE D � PB, when a time-dependent
magnetic field is present.

Solution 2.5.15

1. A charge, which is at first at rest in †, experiences in †0 an acceleration due to
the pure B0-field since the charge is moving in this system. In †, however, this
acceleration must stem from an E-field, since the charge is initially at rest.

2. Let the E0-field in †0 be produced by charges resting in †0, e.g. by charges on
the plates of a capacitor. In † these charges are moving thereby generating a
B-field.
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Solution 2.5.16

1. For the space components of the Minkowski force it holds:

d

d	
pr D �

d

dt
pr D � F D � q.v 	 B/;

pr D � m v

H) pr � d

dt
pr D � m q v � .v 	 B/ D 0 D 1

2

d

dt
p2
r

H) p2
r D const H) v2 D const ” �.v/ D

�
1 � v2

c2

��1=2

D const :

The relativistic energy follows (2.63):

Tr D
q

c2p2
r C m2c4 D const :

2. Initial condition: pr.t D 0/ D m � v0.1; 0; 0/

Ppr D q.v 	 B/ D q
�
vy B;�vx B; 0

�

D 1

�

q B

m

�
pry;�prx; 0

�
:

First partial result: prz D const

! � q B

m

1

�
� !0

1

�
.� D const/ :

d

dt

�
prx C i pry

� D !
�
pry � i prx

� D �i !
�
prx C i pry

�

H) �
prx C i pry

�
.t/ D .prx C i pry/.0/ e�i!t

H) prx.t/ D prx.0/ cos!tC pry.0/ sin!t ;

pry.t/ D �prx.0/ sin!tC pry.0/ cos!t :

Initial conditions:

pr.0/ D m � .v0; 0; 0/ :

This yields:

pr.t/ D m � v0.cos!t;� sin!t; 0/ :

p2
r .t/ D const is obviously guaranteed.
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3. The trajectory we get from

r.t/ � r.t D 0/ D 1

m�

tZ

0

dt0 pr.t
0/

D v0

!

�
sin!t0; cos!t0; 0

�ˇ̌ˇt
0

H) r.t/ D .0; y0; 0/C �
m v0

q B
f.sin!t; cos!t; 0/ � .0; 1; 0/g

H) r.t/ D �
m v0

q B
.sin!t; cos!t; 0/ :

Solution 2.5.17

1. Space components of the relativistic momentum:

pr D �.v/m v I �.v/ D
�

1 � v2

c2

��1=2

;

Ppr D q E

H) Pprx D q E I Ppry D Pprz D 0 :

After integration it follows with the given initial conditions:

pr.t/ D .q E t; �0 m v0; 0/ I �0 D
�

1 � v2
0

c2

��1=2

:

Using (2.63) we get then for the relativistic kinetic energy:

Tr.t/ D
q

m2c4 C c2p2
r .t/ D

q
m2c4 C c2.q2E2t2 C �2

0 m2v2
0/ :

2. Notice, differently from the case of a homogeneous magnetic field (Exer-
cise 2.5.16), in the homogeneous electric field v2 D v2.t/. �.v/ is thus not a
constant, but it is according to (2.61):

Tr D m �.v/c2

H) pr D Tr

c2
v ” v D c2

Tr
pr :
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In detail this means:

Px.t/ D c2 q E tq
m2c4 C c2

�
q2E2t2 C �2

0 m2v2
0

� D 1

q E

d

dt
Tr.t/ ;

Py.t/ D c2�0m v0q
m2c4 C c2

�
q2E2t2 C �2

0 m2v2
0

�

D c2�0m v0p
c2q2E2t2 C T2

r .0/

D c2�0m v0

Tr.0/

1r�
c q E t
Tr.0/

�2 C 1

D c2�0m v0

Tr.0/

�
d

dx
arcsinh x

�
xD c q E t

Tr.0/

D c2�0m v0

Tr.0/

Tr.0/

cqE

d

dt
arcsinh

�
c q E t

Tr.0/

�

D c�0m v0

qE

d

dt
arcsinh

�
c q E t

Tr.0/

�

Pz.t/ D 0 :

3. Using the initial conditions we get:

z.t/ � z0 ;

y.t/ D c �0m v0

q E
arcsinh

�
c q E t

Tr.0/

	
;

x.t/ D 1

q E
.Tr.t/ � Tr.0// ;

Tr.0/ D
q

m2c4 C c2�2
0 m2v2

0 :

The particle traverses the space curve x D x.y/:

c q E t D Tr.0/ sinh

�
y q E

c �0m v0

�
;

Tr.t/ D
q

T2
r .0/C c2q2E2t2 D Tr.0/

s
1C sinh2

�
q E

c �0m v0

y

�

D Tr.0/ cosh

�
q E

c �0m v0

y

�
:
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From that it follows:

x D Tr.0/

q E

�
cosh

�
q E

c �0m v0

y

�
� 1

	
D x.y/ :

Solution 2.5.18

1. It holds according to (2.59) and (2.54):

m.v/

m.0/
D Tr.v/

Tr.0/
D �.v/ D 0:711

0:511
D 1:391

H) m.v/ D 1:391 m.0/ :

2.

� D �1 � ˇ2
��.1=2/ ” ˇ D

s
�2 � 1

�2
D 0:695

H) v D 0:695 c :

3.

v2
nr D

2 T

m.0/
H) v2

nr

c2
D 2 T

m c2
D 0:4

0:511

H) vnr D 0:885 c :

Relative error:

" D vnr � v

v
100 D 27:30% :

Solution 2.5.19

m W mass W Lorentz invariant ;

E0 D mc2 W rest energy ;

Tr D mc2p
1 � v2=c2

W kinetic energy ;

Tr D
q

c2p2
r C m2c4 :
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before after

Fig. A.4

Elastic collision between two equal masses (Fig.A.4):
Goal: Calculation of the scattering angle # as a function of Tr and Tr1 (non-

relativistic: # D 90ı).
Law of conservation of momentum:

pr C 0 D pr1 C pr2 :

Law of energy:

Tr C E0 D Tr1 C Tr2 ;

T2
r D c2p2

r C E2
0 H) pr1;2 D

1

c

q
T2
r1;2
� E2

0 ;

p2
r D p2

r1 C p2
r2 C 2 pr1pr2 cos# ;

1

c2

�
T2
r � E2

0

� D 1

c2

�
T2
r1 C T2

r2

�� 2
E2

0

c2
C 2 pr1pr2 cos#

H) cos# D T2
r C E2

0 � T2
r1 � T2

r2

2 pr1pr2 c2
:

Let us eliminate Tr2; pr2 by conservation laws:

Tr2 D Tr C E0 � Tr1 ;

T2
r2 D T2

r C E2
0 C T2

r1 C 2 TrE0 � 2 TrTr1 � 2 E0Tr1

H) T2
r C E2

0 � T2
r1 � T2

r2 D �2 T2
r1 � 2 TrE0 C 2 TrTr1 C 2 E0Tr1

D 2 .Tr � Tr1/ .Tr1 � E0/ :

pr2 D 1

c

q
T2
r2 � E2

0 D
1

c

p
.Tr2 C E0/ .Tr2 � E0/

D 1

c

p
.Tr � Tr1/ .Tr C 2E0 � Tr1/

pr1 D 1

c

p
.Tr1 C E0/ .Tr1 � E0/
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H) cos# D .Tr � Tr1/ .Tr1 � E0/p
.Tr1 C E0/ .Tr1 � E0/ .Tr � Tr1/ .Tr C 2 E0 � Tr1/

;

cos# D 1r�
1C 2 E0

Tr1�E0

� �
1C 2 E0

Tr�Tr1

� :

Tr1;2 � E0 W Tr � Tr1 H) cos# < 1 H) #min < # � 90ı :

(a)

v � c H) Tr; Tr1 ; Tr2 � E0 ;

Tr � Tr1 D Tr2 � E0 � E0

cos#min ! 1 I #min ! 0ı :

(b)

v � c H) 2 E0

Tr1 � E0

� 1 I 2 E0

Tr � Tr1
� 1

H) cos# ! 0 I # ! 90ı :

It thus comes out the known non-relativistic result!

Solution 2.5.20

1.

Tr D T C Tr.0/ D 2 Tr.0/
.2:54/D � Tr.0/ H) � D 2 :

This means:

ˇ D
�

�2 � 1

�2

�1=2

D
r

3

4
D 0:866 :

The velocity of the �C-meson therefore amounts to:

v
�
�C� D 0:866 c D 2:598 � 108 m

s
:

2. Decay time in the rest system of the meson:

	 D 2:5 � 10�8 s :
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Decay time in the rest system of the observer:

	 0 D � 	 D 5 � 10�8 s :

‘Decay-distance’:

d D v 	 0 D 12:990m :

Solution 2.5.21 Law of conservation of energy:

Tr.v/C Tr.0/ D Tr .v1/C Tr .v2/

H) �.v/C 1 D � .v1/C � .v2/ :

Law of conservation of momentum:

m � v D m � .v1/ v1 C m � .v2/ v2

H) �.v/ˇ D � .v1/ˇ1 C � .v2/ˇ2 :

The last equation may be decomposed into components:

�.v/ˇ D � .v1/ ˇ1 cos# C � .v2/ ˇ2 cos' ;

0 D � .v1/ ˇ1 sin# � � .v2/ ˇ2 sin ' ;

�2 .v2/ ˇ2
2

�
cos2 ' C sin2 '

� D �2 .v1/ ˇ2
1 sin

2 # C .�.v/ˇ � � .v1/ ˇ1 cos#/2

H) �2 .v2/ ˇ2
2 D �2 .v1/ ˇ2

1 C �2.v/ˇ2 � 2�.v/� .v1/ ˇˇ1 cos# :

We eliminate the ˇ’s by the relation:

� .vi/ ˇi D
p

�2 .vi/ � 1

H) �2 .v2/ � 1 D �2 .v1/ � 1C �2.v/ � 1 � 2
p

�2.v/ � 1
p

�2 .v1/� 1 cos# :

We combine this equation with the law of conservation of energy in order to remove
�.v2/:

� .v2/ D �.v/C 1 � � .v1/

H) �2 .v2/ D �2.v/C 1C �2 .v1/C 2�.v/� 2� .v1/� 2�.v/� .v1/ :
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This we insert into the above equation:

2�.v/� 2� .v1/ � 2�.v/� .v1/ D �2 � 2
p

�2.v/ � 1
p

�2 .v1/ � 1 cos#

H) �2 .� .v1/� 1/ .�.v/C 1/ D �2
p

�2.v/ � 1
p

�2 .v1/ � 1 cos#

H) .� .v1/� 1/ .�.v/C 1/ D .�.v/ � 1/ .� .v1/C 1/ cos2 # :

That can be solved for �.v1/:

� .v1/ D .�.v/C 1/C .�.v/ � 1/ cos2 #

.�.v/C 1/� .�.v/ � 1/ cos2 #
:

With the abbreviation

˛2 D �.v/ � 1

�.v/C 1

it then remains to be solved:

� .v1/ D 1C ˛2 cos2 #

1� ˛2 cos2 #
:

We now go back to the law of conservation of momentum and build the quotient of
the two component equations:

tan ' D � .v1/ ˇ1 sin#

�.v/ˇ � � .v1/ ˇ1 cos#
:

It is

� .v1/ ˇ1 D
p

�2 .v1/� 1 D
s

.1C ˛2 cos2 #/
2

.1 � ˛2 cos2 #/
2
� 1

D 2˛ cos#

1 � ˛2 cos2 #
:

On the other hand it holds:

�.v/ˇ D
p

�2.v/ � 1 Dp.�.v/C 1/ .�.v/ � 1/ D ˛ .�.v/C 1/ :
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This we insert into the expression for tan ':

tan' D
2˛ cos# sin#
1�˛2 cos2 #

˛ .�.v/C 1/� 2˛ cos2 #
1�˛2 cos2 #

D 2 cos# sin#

.�.v/C 1/� .�.v/C 1/ ˛2 cos2 # � 2 cos2 #

D 2 cos# sin#

�.v/ .1 � cos2 #/C .1 � cos2 #/

D 2

�.v/C 1

cos# sin#

1 � cos2 #
:

From this it follows eventually the assertion:

tan ' tan# D 2

�.v/C 1
:

In the non-relativistic limit � ! 1 we get:

tan' tan# ! 1 :

Because of

tan.' C #/ D tan# C tan'

1 � tan ' tan#

this means

tan.' C #/!1

and therewith:

' C # ! �

2
:

Solution 2.5.22 Energy of the electron:

T2
r D c2p2

r C m2c4 D c2p2
r C T2

r .0/ :

On the other hand:

Tr D T C Tr.0/ :
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Combination of these two equations:

T2 C 2 T Tr.0/ D c2p2
r ;

T  ! 1MeV ;

Tr.0/  ! 0:511MeV

H) c2p2
r D 2:022 .MeV/2 H) c pr D 1:422MeV :

The photon has no rest mass:

Tr.�/ D c pr D 1:422MeV :
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Kinetic energy, 46–50, 53, 61, 85, 90, 94–96,
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L
Lagrange equations of motion, 83, 97
Lagrange function, 83–87, 97
Length measurement, 19, 20, 31
Length square, 11, 15, 24, 26, 33–35,

39, 96
Light cone, 23–27, 31
Light-like distance, 27
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Lorentz invariance, 23
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Lorenz condition, 64, 65

M
Mass-loss of the sun, 49
Matrix of Lorentz transformation, 11–16
Matrix of special Lorentz transformation,

14
Maxwell equations, 61, 64, 67–71, 82, 97
Mechanical momentum, 45, 47, 50, 90, 98
Michelson-Morley experiment, 5–9, 11, 30
Minkowski diagram, 23–27, 31
Minkowski force, 44–46, 59, 78, 80, 83, 88,

96–98, 131
on charged particle in electromagnetic field,

88
Minkowski space, 11, 12, 15, 23, 24, 26, 33,

34, 39, 44, 67, 91, 97, 111
Mixed tensor, 37, 38
Momentum, 43–52, 56, 60, 61, 94, 95, 116,

117, 135, 137, 138

N
Nabla-operator, 41
Newton’s fiction, 3, 30
Nuclear fission, 49
Nuclear fusion, 49
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O
Optical path length, 6, 8

P
Pair annihilation, 49
Pair production, 49
Point charge, 73–77, 93, 97, 124, 127
Position vector, 15, 23–25, 35, 102, 111
Principle of constancy of velocity of light, 1,

10
Proper time, 18, 19, 29, 31, 42–44, 59, 78, 85,

87, 91, 92, 96, 112, 116, 120
Pseudo force, x, 3

R
Raising and lowering an index, 40
Relativistic energy of charged particle in

electromagnetic field, 91
Relativistic energy of free particle, 48
Relativistic generalization of Newton’s law, 44
Relativistic kinetic energy, 46–50, 61, 90, 94,

96, 132
Relativistic Lagrangian mechanics, 83
Relativistic momentum, 45, 50, 52, 56, 94, 132
Relativity of simultaneity, 16–17, 30
Rest-charge density, 62, 81
Rest energy, 47, 49, 55, 96, 134
Rest mass, 48, 94, 95, 140
Rest system, 28, 29, 63, 74–76, 97, 99, 105,

107, 114, 117, 129, 136, 137

S
Scalar potential, 63, 87, 93
Scalar product, 15, 38–43, 46, 48, 96, 97, 110
Simultaneity, x, 1, 9, 10, 16–17, 20, 27, 30, 106
Space axis, 25
Space-component, 15, 40, 44, 45, 47, 48, 58,

78–80, 86, 88–90, 96, 131, 132

Space-like distance, 27, 31
Space-like four-vector, 26, 31
Space-time point, 34, 99
Special Lorentz transformation, 12, 14, 30
Synchronization of clocks, 10

T
Tensor

of first rank, 35
of k-the rank, 34
product, 36–38
of second rank, 36–38, 67, 91, 112
term, 34
of zeroth rank, 35, 38, 71

Time axis, 24, 25
Time-component, 15, 45–47, 60, 65, 79, 89,

90, 96, 98
of Minkowski force, 45, 96

Time dilatation, 17–19, 31
Time-like distance, 27, 31
Time-like four-vector, 26
Time measurement, 9, 16, 18
Trace of matrix, 38
Transformation of forces, 58

V
Vector potential, 63, 64, 87

W
Wave equation, 63, 65, 93, 97
World ether, 3, 4, 30
World event, 27, 31
World line, 26, 42, 120
World-momentum, 47, 48, 58
World-tensor, 36, 45
World-velocity, 42–43, 63, 81, 96, 97
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